Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.
Contents

1. SCOPE ...5

2. REFERENCES ..6
 2.1 NORMATIVE REFERENCES ..6
 2.2 INFORMATIVE REFERENCES ..7

3. TERMINOLOGY AND CONVENTIONS ..8
 3.1 CONVENTIONS ..8
 3.2 DEFINITIONS ..8
 3.3 ABBREVIATIONS ..9

4. INTRODUCTION ..10

5. BOOTSTRAPPING ..11
 5.1 Bootstrap Scenarios ..11
 5.1.1 Requirements ..11
 5.1.2 Solutions ..11
 5.2 Bootstrap Profiles ...14
 5.3 OMA Client Provisioning Profile ...15
 5.3.1 Transports ...15
 5.3.2 Mapping Characteristic Data to the Management Tree ..15
 5.3.3 Management Object Location in the Management Tree ...16
 5.3.4 Management Object Access Rights ..16
 5.3.5 Special Behaviors ...16
 5.3.6 Device Management, Access Point and Proxy Information ..16
 5.3.7 Other Client Provisioning information ..16
 5.4 OMA Device Management Profile ...16
 5.4.1 Transport ..17
 5.4.2 Management tree ACL and bootstrap ...17
 5.4.3 Management Object Access Rights ..17
 5.4.4 Bootstrap Message Content ..17
 5.4.5 Processing of the Bootstrap ..17
 5.4.6 Smartcard ..18

APPENDIX A. (INFORMATIVE) ...19
 A.1 Approved Version History ..19

APPENDIX B. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) ..20
 B.1 SCR for Bootstrap Client ..20
 B.2 SCR for Bootstrap Server ..20

APPENDIX C. GENERAL MAPPING ..22

APPENDIX D. STORAGE OF DM BOOTSTRAP DATA ON THE SMARTCARD (NORMATIVE) ..23
 D.1 File structure ..23
 D.2 Bootstrap data on SIM or UICC activated in 2G mode ...24
 D.2.1 Access to the file structure ..24
 D.2.2 Files Overview ..24
 D.2.3 Access Method ..24
 D.2.4 Access Conditions ...24
 D.2.5 Requirements on the SIM or 2G UICC ..24
 D.3 Bootstrap data on UICC activated in 3G mode ..25
 D.3.1 Access to the file structure ..25
 D.3.2 Files Overview ..25
 D.3.3 Access Method ..25
 D.3.4 Access Conditions ...25
 D.3.5 Requirements on the 3G UICC ..25

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
D.4 FILES DESCRIPTION ..26
D.4.1 Object Directory File, EF ODF ..26
D.4.2 Bootstrap Data Object Directory File, EF DODF-bootstrap ..26
D.4.3 EF DM_Bootstrap ..28

Figures

Figure 1: Customized bootstrap ...12
Figure 2: Bootstrap from smartcard ..13
Figure 3: Example Management Object and Name Identifiers ...15
Figure 4: File structure for DM bootstrap data on SIM smartcard or 2G UICC ..24
Figure 5: File structure for DM bootstrap data on 3G UICC ..25

Tables

Table 1: General Mapping ..22
1. **Scope**

This document defines how an OMA DM device is brought from a ‘clean’ state, to a state where it is capable to initiate a management session with a provisioned management server.
2. References

2.1 Normative References

[PROVBOOT] “Provisioning Bootstrap 1.1”. Open Mobile Alliance™. OMA-WAP-ProvBoot-v1_1. URL:http://www.openmobilealliance.org

[PROVCONT] “Provisioning Content 1.1”. Open Mobile Alliance™. OMA-WAP-ProvCont-v1_1. URL:http://www.openmobilealliance.org

[TS102.221] “Smart Cards; UICC-Terminal interface; Physical and logical characteristics”, (ETSI TS 102 221 release 6), URL:http://www.etsi.org/

2.2 Informative References

None.
3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

See the DM Tree and Description [DMTND] document for definitions of terms related to the management tree.

2G UICC
UICC activated in a 2G mode that has physical characteristics of UICC [TS102.221] but logical characteristics of SIM [151.011].

3G UICC
UICC activated in a 3G mode that has physical and logical characteristics of the UICC [TS102.221].

ADM
Access condition to an EF which is under the control of the authority which creates this file.

Application
The implementation of a well-defined and related set of functions that perform useful work on behalf of the user. It may consist of software and or hardware elements and associated user interfaces.

Application Identifier
A data element that identifies an application in a smartcard. An application identifier may contain a registered application provider number in which case it is a unique identification for the application. If it contains no application provider number, then this identification may be ambiguous.

Authentication
Authentication is the process of ascertaining the validity of either the Device or the Device Management Server’s identity.

Binary Files
Binary Files are equivalent to transparent files as described in [TS102.221].

Bootstrap
The process of provisioning the DM client to a state where it is able to initiate a management session to a new DM server.

Card Issuer
The organization or entity that owns and provides a smartcard product.

Cardholder
The person or entity presenting a smartcard for use.

Cardholder Verification
Also called the PIN. Typically a 4 to 8 digit number entered by the cardholder to verify that the cardholder is authorized to use the card.

Command
A message sent by the ME to the smartcard that initiates an action and solicits a response from the smartcard.

Content
Content means data delivered inside of OMA DM messages <Data>-elements.

Data Object Directory Files
Contain directories of data objects (not keys or certificates) ([PKCS#15], section 6.7) known to the PKCS#15 application.

Dedicated File
A file containing access conditions and, optionally, Elementary Files (EFs) or other Dedicated Files.

Device
The Device is, or is to become managed by one or more remote entities (Device Management Servers). A device may have many characteristics, and many parameters may be made available for reading, writing, deleting and modifying by a Device Management Server.

Device Management Server
The Device Management Server is an entity that is responsible for maintaining one or more Devices, in whole or in part. Its role is to facilitate the easy maintenance of a Device.

Elementary File
A set of data units or records that share the same identifier. It cannot be a parent of another file.

File Identifier
A 2-byte binary value used to address a file on a smartcard.

Management Session
A continuous connection between the Device and the Device Management Server established for the purpose of carrying out one or more device management operations.

Message Authentication
A value computed based on a message hash and some form of shared secret. The MAC is transported
Code

Object Directory File

The mandatory Object Directory File ([PKCS#15], section 6.2) consists of pointers to other EFs, each one containing a directory over PKCS#15 objects of a particular class (here and below, a “directory” means a list of objects).

Path

Concatenation of file identifiers without delimitation. The Path type is defined in [ISO7816-4] sub-clause 5.1.2. If the path starts with the MF identifier (0x3F00), it is an absolute path; otherwise it is a relative path. A relative path must start with the identifier of the current DF (or with the identifier ‘0xFFF’).

Record

A string of bytes within an EF handled as a single entity.

Smartcard

A device with an embedded microprocessor chip. A smartcard is used for storing data and performing typically security related (cryptographic) operations. A smartcard may be the SIM, the UICC, the R-UIM or a smartcard used in a secondary smartcard reader of a device.

UICC

A physically secure device, an IC card (or smartcard), that can be inserted and removed from the device. It may contain one or more applications [TS102.221].

3.3 Abbreviations

2G Second generation network i.e. GSM
3G Third generation network i.e. UMTS
ADF Application Dedicated File
AID Application Identifier
ALW Always. Access condition indicating a given function is always accessible.
CHV Cardholder Verification
DF Dedicated File
DIR Directory File
DM Device Management
DODF Data Object Directory Files
EF Elementary File
FCP File Control Parameter
IC Integrated Circuit
ID Identifier
MAC Message Authentication Code
ME Mobile Equipment
MF Master File
ODF Object Directory File
OID Object Identifier
OMA Open Mobile Alliance
PIN Personal Identification Number
SIM GSM Subscriber Identity Module
WAP Wireless Application Protocol
4. Introduction

Other OMA DM specifications define how a management session is established and maintained. However, in order for a device to be able to initiate a management session it must be provisioned with OMA DM settings.

Bootstrap is a process of provisioning the DM client to a state where it is able to initiate a management session to a new DM server. Bootstrap can move a device from an un-provisioned, empty state, to a state where it is able to initiate a management session to a DM server. DM clients that have already been bootstrapped can be further bootstrapped to enable the device to initiate a management session to new DM servers.
5. Bootstrapping

5.1 Bootstrap scenarios

OMA DM devices must be able to function in diverse network environments and using a large set of protocols. This makes it hard to find a ‘one size fits all’ solution to the bootstrap problem. This section starts with the most basic requirements for bootstrap and continues to define three different processes for bootstrap.

5.1.1 Requirements

An OMA DM solution capable of transforming an empty, clean device into a state where it is able to initiate a management session needs to address these requirements.

- Re-use technology (WAP Push)
- Tightly standardized and simple \Rightarrow Highly interoperable
- Self sufficient and complete
- Secure
- Data format should be XML based
- Content mappable to OMA DM management objects
- Transport encoding should be [WBXML1.1], [WBXML1.2], [WBXML1.3]

5.1.2 Solutions

This document defines three different ways to perform the bootstrap process.

- Customized bootstrap
 Devices are loaded with OMA DM bootstrap information at manufacture. Also referred to as factory bootstrap.

- Server initiated bootstrap
 Server sends out bootstrap information via some push mechanism, e.g. WAP Push or OBEX. Server must receive the device address/phone number beforehand.

- Bootstrap from smartcard
 The smartcard is inserted in the device and the DM client is bootstrapped from the smartcard.

5.1.2.1 Customized bootstrap

This is a convenient way to bootstrap a device from an end user perspective because the user does not have to do anything. In this scenario, an operator orders the devices pre-configured from a device manufacturer. All the information about the operator's network and device management infrastructure is already in the devices when they leave the factory. Another advantage of this method is that it is very secure. There is no need to transport sensitive commands and information, e.g. shared secrets, over the air. The method is however not very flexible and not all device manufacturers may provide this service. Not all devices are sourced via the operator. In this scenario, either the DM server or the Client initiates an OMA DM session after user personalizes and bootstraps the Device. If the server initiates management session, the Server is informed about Device address or phone number previously.

Figure 1 gives an overview of this scenario.
5.1.2.1.1 **Bootstrap from smartcard**

This is a convenient way to bootstrap a device from an end user perspective because the user does not have to do anything. In this scenario the DM client is able to obtain the information necessary to bootstrap it from the smartcard. There is no need to transport sensitive bootstrap commands and information, e.g. shared secrets, over the air. The smartcard is secure, ensuring that the bootstrapping commands have been authorized. A device supporting the smartcard can be bootstrapped for DM without necessarily being purchased from the operator. In this scenario, either the DM Server or the Client initiates an OMA DM session after user bootstraps and personalizes the Device. If Server initiates management session, the Server is informed about Device address or phone number previously.

Figure 2 gives an overview of this scenario.
5.1.2.2 Server initiated bootstrap

In this scenario, the devices leave the assembly line in a clean and empty state. Once a user acquires a device and personalizes it, e.g. by inserting a SIM, the prerequisites for this process are in place. The problem is now to inform the server of the identity, address or phone number of the device and this can be achieved in many ways.

- It could be done at the point-of-sales where a sales system ties in with the management system and delivers the information.
- It could be done through a self-service web site where the user enters her own phone number.
- It could be done by the network the first time the device registers to the network. When this happens a trigger could be sent from the core network to the management server with the number used by the device.
- It could be done with a voice prompt system where the user is prompted to key in her phone number using DTMF.

Regardless of how the phone number or device address reaches the management server, the server is now in a position where it can send out an OMA DM bootstrap message. This bootstrap message, whose structure and content is defined in this
document, contains enough information for the device to be able to initiate a management session with the device management server that sent out the bootstrap message.

It is important that DM clients accept bootstrapping commands only from authorized servers [DMSecurity].

Figure 3 gives an overview of this scenario.

![Figure 3: Server initiated bootstrap](image)

5.2 Bootstrap profiles

OMA DM has been designed to meet the management requirements of many different types of devices. For some of these device types there already exists a bootstrap or provisioning mechanism. In these cases OMA DM leverages the existing mechanisms so that backwards compatibility and simple deployment can be achieved. To define how different kinds of devices can be bootstrapped and to specify how OMA DM leverages existing standards this document introduces the concept of bootstrap profiles. Each profile defines its own security, transport and data format. Support for any particular profile is OPTIONAL.
Currently two profiles are planned, but as interest in OMA DM grows and usage of it increases more profiles can be added. The two profiles are:

OMA Client Provisioning

This profile specifies alignment of two existing enablers – OMA Client Provisioning [ERELDCP] and OMA Device Management [ERELDDM]. The profile defines how the information provisioned using OMA Client Provisioning can be transferred to the management tree specified in the OMA Device Management. In this profile at least the mapping of w7 (DM account) information to the management tree needs to be supported, but other provisioning information can also be mapped to the management tree.

OMA Device Management

This profile defines how the OMA Device Management [ERELDDM] can be used for bootstrapping.

5.3 OMA Client Provisioning Profile

OMA Client Provisioning enabler [ERELDCP] is designed to provision the initial configuration information to devices, and can be used with OMA Device Management enabler [ERELDDM] to subsequently add, update, delete and retrieve all kind of data. The purpose of this chapter is to describe how to map the Client Provisioning information to the Device Management management tree in a way that later management for the provisioned parameters is possible in case both Client Provisioning and Device Management enablers are supported by the client device.

The content of the Bootstrap message is based on the OMA Provisioning Content Specification [PROVCONT]. In order to enable the usage of the OMA Provisioning Content Specification within the OMA Device Management Framework, the DM application registration document w7 is released by DM group to provide information how the APPLICATION characteristic in OMA Provisioning content [PROVCONT] is used to provision OMA Device Management enabler [ERELDDM] parameters.

5.3.1 Transports

Bootstrapping using OMA Client Provisioning profile is done as defined in the OMA Provisioning Bootstrap specification [PROVBOOT].

5.3.2 Mapping Characteristic Data to the Management Tree

When device receives Client Provisioning document the device creates a management object for that information to the management tree in order to enable the subsequent management. Management object can have two different types of name space identifiers (Property Name described in [DMTND]) - One where the name is already given in the DDF [DMTND] and another where the name is dynamic separating the instances of the child nodes (See Figure 3: Example Management Object and Name Identifiers).

![Figure 3: Example Management Object and Name Identifiers](image)

The name identifiers for named nodes are already given in the management object DDF. Also, the parameter mapping between Client Provisioning parameters and Management Object parameters MAY be specified in the Management Object.
specification. In addition a general rule that SHOULD be followed to map named information between Client Provisioning APPLICATION characteristic and standardized Application Connectivity Management Object template structure is given in Appendix C.

The client device gives the name identifiers for dynamic nodes that are separating the instances of the child nodes. Though the format of name identifiers for these dynamic nodes is implementation specific, a client MAY assign numeric identifiers starting from ‘1’ and increasing by one every time. In this case and when there is priority specified in the Provisioning Content document the rank SHOULD reflect that.

5.3.3 Management Object Location in the Management Tree

Newly created management object location in the management tree is decided by client device. However, it MUST be placed following the published DDF of the management tree so that the server is able to know where to find the provisioned information.

5.3.4 Management Object Access Rights

All provisioning information mapped from the Provisioning Content [PROVCONT] document to management tree MUST be granted Get, Replace and Delete ACL rights to the ServerID specified in the w7 APPLICATION characteristic provisioned inside Provisioning Content message. The management authority owning the ServerID may modify this ACL in a subsequent DM session.

In case w7 APPLICATION characteristic is not part of the provisioning message client device receiving the message and mapping the information to the DM management tree MUST NOT give the access rights to these parameters to the improper management authority.

5.3.5 Special Behaviors

5.3.5.1 Smart Card Provisioning

In case Smart Card contains the provisioning information as specified in the [PROVSC] device SHOULD detect the removal and/or change of the Smart Card. When the Smart Card is removed and/or changed, the client device SHOULD remove all the provisioned management object information (from the Smart Card) from the management tree.

5.3.6 Device Management, Access Point and Proxy Information

Devices supporting both Client Provisioning and Device Management MUST be able to map w7 (Device Management account) and NAPDEF (if supported) and PROXY (if supported) characteristics information to the management tree. The mapping of the named nodes is specified in [DMSTDOBJ].

In case device supports the management objects specified in [DMSTDOBJ] a mapping is described in Appendix B in [DMSTDOBJ].

Client device MUST give the names for the dynamic nodes as described in Section 5.3.2.

5.3.7 Other Client Provisioning information

Devices supporting both Client Provisioning and Device Management MAY decide to map other information provisioned in the Client Provisioning message to the management tree. A general mapping is described in Appendix C, but in case a specific mechanism is described in the Management Object document that MUST be followed.

5.4 OMA Device Management Profile

The content of the Bootstrap message is a standard OMA DM message that MUST be encoded into [WBXML1.1], [WBXML1.2], [WBXML1.3]. Clients MUST support embedded WBXML encoded TNDS objects [DMTNDS] and MUST support the inbox. In order to be bootstrapped successfully the DM client requires both DM account information and
connectivity information. It is RECOMMENDED to use standardized connectivity MOs to represent the connectivity information.

5.4.1 Transport

Any transport MAY be used to send the Bootstrap message to the DM client. Security appropriate for bootstrapping a device securely, and appropriate for the transport used MUST be employed. Otherwise, transport neutral security MUST be employed. See the security document for further information [DMSecurity].

5.4.2 Management tree ACL and bootstrap

The policy that the device consults to decide if a bootstrap message will be accepted and what access rights to be granted for the new management authority is outside the scope of this specification. If a bootstrap message is accepted it MUST be processed according to the conditions described in section 5.4.5, in order for the bootstrap to be successful.

5.4.3 Management Object Access Rights

Any ACL values that is to be set for the new management objects added in the DM Bootstrap message, MUST be included in the TNDS data as ACL property data for the applicable nodes.

5.4.4 Bootstrap Message Content

The content of a bootstrap message is an OMA DM message. However, it is a special package in many ways since it is not part of an ongoing OMA DM session but rather a one-time transfer of information. Hence, many of the elements needed to manage the session are superfluous in the context of bootstrapping, but they must still be included so that the message may be processed by the normal OMA DM client.

All OMA DM bootstrap messages MUST be [WBXML1.1], [WBXML1.2], [WBXML1.3] encoded.

OMA DM servers MUST NOT expect any Status for the command in a bootstrap package. An implicit acknowledgement of successful bootstrap can be concluded when the client connects to the server for the first management session.

A typical bootstrap message will set the values for the DMAcc management object defined in [DMSTDOBJ].

5.4.5 Processing of the Bootstrap

A Bootstrap message is processed just like a normal DM message, except that a response MUST NOT be sent back.

The device MAY rename a new MO. In the case of the Connectivity MO the device SHOULD also rename the values of the corresponding connectivity references to the new name for all MO’s encoded within the same TNDS object.

When a TNDS object contains a MO where connectivity references are linked to a Connectivity or Proxy MO that also are included in the same TNDS object, then the values of those connectivity references MAY contain a URI that starts with "./Inbox". In that case the URI MUST have the value of "./Inbox/" plus the URI of that Connectivity MO’s location in the same TNDS object.

This is an example of a TNDS object there only part of the TNDS object is shown:

```xml
<MgmtTree>
  <VerDTD>1.2</VerDTD>
  <Node>
    <NodeName>OperatorX</NodeName> <!--- DM Account MO -->
    <RTProperties>
      <Format>
        <node/>
      </Format>
      <Type><DDFName>org.openmobilealliance/1.0/w7</DDFName></Type>
      <RTProperties>
        <Node>
          <NodeName>PrefConRef</NodeName>
          <RTProperties>
            <Format>
```

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
If a device encounters an item with a URI of the EXT sub-tree that it is not prepared to handle, the device MAY ignore that item in order that the bootstrap may succeed.

After successfully processing the bootstrap, the OMA DM client SHOULD automatically initiate a client-initiated session to any DM server configured in the bootstrap at the next practical opportunity (i.e., when network connectivity and other factors would allow such a connection).

If the bootstrap message contains a MO that the device does not support, the device MAY ignore this MO, so the bootstrap can continue normally.

If the bootstrap message contains multiple versions of a MO, the device SHOULD use the latest version of that MO that it supports and ignore the other versions, so the bootstrap can continue normally.

5.4.6 Smartcard

If the Device supports a smartcard, the DM Client MUST support detection, retrieval, and processing of bootstrap data from the smartcard as described in Appendix D. The DM Client MAY include configurable security policy to disable smartcard bootstrap functions. If the smartcard bootstrap function is enabled and the smartcard has not been rejected by the device (for example, because of a SIM-locking mechanism), the DM Client SHALL retrieve bootstrap data from the smartcard when the device is switched on and apply it to the device configuration.

The device SHOULD check that the bootstrap data for all DM servers previously bootstrapped from the smartcard are still available from the smartcard when the device is switched on; if not, the account information for any DM Servers that were previously bootstrapped from the smartcard but are no longer stored on the smartcard SHOULD be removed from the device management configuration.
Appendix A.

(A.1) Approved Version History

<table>
<thead>
<tr>
<th>Reference</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>
| OMA-TS-DM_Bootstrap-V1_2 | 09 Feb 2007 | Approved by TP
| | | TP Doc ref# OMA-TP-2007-0075R03-INP_ERP_DM_V1.2_for_Final_Approval |
Appendix B. Static Conformance Requirements (Normative)

The notation used in this appendix is specified in [IOPPROC].

B.1 SCR for Bootstrap Client

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM-BOOT-C-001</td>
<td>Support for OMA Client Provisioning Profile</td>
<td>Section 5.3</td>
<td>O</td>
<td>ProvBoot:ProvBoot-B-C-001 AND DM-BOOT-C-003</td>
</tr>
<tr>
<td>DM-BOOT-C-002</td>
<td>Support for OMA Device Management Profile</td>
<td>Section 5.4</td>
<td>O</td>
<td>DM-BOOT-C-010 AND DM-BOOT-C-011</td>
</tr>
<tr>
<td>DM-BOOT-C-003</td>
<td>Provisioning Content granted Get, Replace and Delete ACL rights to ServerID in w7.</td>
<td>Section 5.3.4</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>DM-BOOT-C-004</td>
<td>Support for OMA Client Provisioning Profile AND OMA Device Management</td>
<td>Section 5.3.6</td>
<td>O</td>
<td>DM-BOOT-C-005</td>
</tr>
<tr>
<td>DM-BOOT-C-005</td>
<td>Map w7, NAPDEF (if supported) and PROXY (if supported) to management tree.</td>
<td>Section 5.3.6</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>DM-BOOT-C-006</td>
<td>Device supports a Smartcard.</td>
<td>Section 5.4.6</td>
<td>O</td>
<td>DM-BOOT-C-007</td>
</tr>
<tr>
<td>DM-BOOT-C-007</td>
<td>DM Client is capable of detecting, retrieving, and processing DM Profile bootstrap data from the Smartcard.</td>
<td>Section 5.4.6</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>DM-BOOT-C-008</td>
<td>Smartcard bootstrap function is enabled by DM client and the smartcard has not been rejected by the device.</td>
<td>Section 5.4.6</td>
<td>O</td>
<td>DM-BOOT-C-009</td>
</tr>
<tr>
<td>DM-BOOT-C-009</td>
<td>Device retrieves bootstrap data from the Smartcard and applies it to the device configuration.</td>
<td>Section 5.4.6</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>DM-BOOT-C-010</td>
<td>Support for embedded WBXML encoded TNDS objects.</td>
<td>Section 5.4</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>DM-BOOT-C-011</td>
<td>Support for Inbox.</td>
<td>Section 5.4</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

B.2 SCR for Bootstrap Server

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM-BOOT-S-001</td>
<td>Support for OMA Client Provisioning Profile</td>
<td>Section 5.3</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>DM-BOOT-S-002</td>
<td>Support for OMA Device Management</td>
<td>Section 5.4</td>
<td>O</td>
<td>DM-BOOT-S-003</td>
</tr>
<tr>
<td>Item</td>
<td>Function</td>
<td>Reference</td>
<td>Status</td>
<td>Requirement</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>DM-BOOT-S-003</td>
<td>Encode DM message into WBXML.</td>
<td>Section 5.4</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C. General Mapping

In the below table the Provisioning Content APPLICATION characteristic correspondence is shown to the Structure Template for Application Connectivity Management Object.

<table>
<thead>
<tr>
<th>APPLICATION CHARACTERISTIC INFORMATION</th>
<th>STRUCTURE TEMPLATE FOR APPLICATION CONNECTIVITY MANAGEMENT OBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPID</td>
<td>AppID</td>
</tr>
<tr>
<td>PROVIDER-ID</td>
<td>ProviderID</td>
</tr>
<tr>
<td>NAME</td>
<td>Name</td>
</tr>
<tr>
<td>AACCEPT</td>
<td>AAccept</td>
</tr>
<tr>
<td>APROTOCOL</td>
<td>AProtocol</td>
</tr>
<tr>
<td>TO-PROXY</td>
<td>PrefConDef, if multiple ToConRef/<X>/ConRef</td>
</tr>
<tr>
<td>TO-NAPID</td>
<td>PrefConDef, if multiple ToConRef/<X>/ConRef</td>
</tr>
<tr>
<td>ADDR</td>
<td>PrefAddr</td>
</tr>
<tr>
<td>APPADDR/ADDR</td>
<td>AppAddr/<X>/Addr</td>
</tr>
<tr>
<td>APPADDR/ADDRTYPE</td>
<td>AppAddr/<X>/AddrType</td>
</tr>
<tr>
<td>APPADDR/PORT/PORTNBR</td>
<td>AppAddr/<X>/Port/<X>/PortNbr</td>
</tr>
<tr>
<td>APPADDR/PORT/SERVICE</td>
<td>AppAddr/<X>/Port/<X>/Service/<X>/Service</td>
</tr>
<tr>
<td>APPAUTH/AAUTHLEVEL</td>
<td>AppAuth/<X>/AAuthLevel</td>
</tr>
<tr>
<td>APPAUTH/AAUTHTYPE</td>
<td>AppAuth/<X>/AAuthType</td>
</tr>
<tr>
<td>APPAUTH/AAUTHNAME</td>
<td>AppAuth/<X>/AAuthName</td>
</tr>
<tr>
<td>APPAUTH/AAUTHSECRET</td>
<td>AppAuth/<X>/AAuthSecret</td>
</tr>
<tr>
<td>APPAUTH/AAUTHDATA</td>
<td>AppAuth/<X>/AAuthData</td>
</tr>
<tr>
<td>RESOURCE/URI</td>
<td>Resource/<X>/URI</td>
</tr>
<tr>
<td>RESOURCE/NAME</td>
<td>Resource/<X>/Name</td>
</tr>
<tr>
<td>RESOURCE/AACCEPT</td>
<td>Resource/<X>/AAccept</td>
</tr>
<tr>
<td>RESOURCE/AAUTHTYPE</td>
<td>Resource/<X>/AAuthType</td>
</tr>
<tr>
<td>RESOURCE/AAUTHNAME</td>
<td>Resource/<X>/AAuthName</td>
</tr>
<tr>
<td>RESOURCE/AAUTHSECRET</td>
<td>Resource/<X>/AAuthSecret</td>
</tr>
<tr>
<td>RESOURCE/AAUTHDATA</td>
<td>Resource/<X>/AAuthData</td>
</tr>
<tr>
<td>RESOURCE/STARTPAGE</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 1: General Mapping
Appendix D. Storage of DM bootstrap data on the Smartcard (Normative)

We can sort out three main types of smartcards used for wireless telecom networks, characterised by their physical and logical characteristics:

- SIM smartcards platforms [TS151.011]
- UICC smartcards platforms [TS102.221]
- R-UIM smartcards platform [C.S0023-B_v1.0]

This section aims at specifying the storage mechanism of DM bootstrap data on such smartcard platform type.

For the purposes of this document the R-UIM is to be treated according to the rules defined for the SIM.

D.1 File structure

The information format is based on [PKCS#15] specification. The bootstrap data are located under the PKCS#15 directory allowing the card issuer to decide the identifiers and the file locations. The smartcard operations that are relevant for the bootstrap operation include:

- Application selection
- Cardholder verification
- File access (select file, read, write)

The [PKCS#15] specification defines a set of files. Within the PKCS#15 application, the starting point to access these files is the Object Directory File (ODF). The EF(ODF) contains pointers to other directory files. These directory files contain information on different types of objects (authentication objects (PIN), data objects, etc). For the purpose of DM bootstrap, EF (ODF) MUST contain the record describing the DODF-bootstrap. The EF(ODF) is described in section D.4.1 and [PKCS#15].

EF(ODF) contains pointers to one or more Data Object Directory Files (DODF). Each DODF is regarded as the directory of data objects known to the PKCS#15 application. For the purposes of DM bootstrap, EF(DODF-bootstrap) contains pointer to the bootstrapping data object, namely DM_Bootstrap File. The EF(DODF-bootstrap) is described in section D.4.2 and [PKCS#15].

The provisioning files are stored as PKCS#15 opaque data objects.

The support of DM smartcard bootstrap data will be indicated to the ME’s user agent, by the presence in the EF DIR (see [TS102.221]) of an application template as defined here after.

The recommended format of EF(DIR) is a linear fixed record in order to be in line with [TS102.221].

EF (DIR) MUST contain the application template used for a PKCS#15 application as defined in [PKCS15]. Application template MUST consist of Application identifier (tag 0x4F) and Path (tag 0x51) information.

The EF(ODF) and EF(DODF-bootstrap) MUST be used by the ME to determine the path of the DM_Bootstrap file.

UICC smartcard platforms can support two modes of activation: 2G and 3G. UICC smartcard platform activated in a 2G mode has the logical characteristics of the SIM smartcard platform [TS151.011]. In that case, smartcard operation for accessing DM bootstrap data conform to the ones defined for the SIM as specified in section D.2.

UICC smartcard platform activated in a 3G mode has the physical and logical characteristics according to [TS102.221]. In that case, smartcard operations for accessing DM bootstrap data are specified in section D.3.
D.2 Bootstrap data on SIM or UICC activated in 2G mode

D.2.1 Access to the file structure
To select the PKCS15 application, the ME MUST evaluate the PKCS#15 application template present in the EF (DIR), then the ME MUST use the indirect selection method as defined in [TS151.011] to select the application.

D.2.2 Files Overview
The file structure for the DM bootstrap data within the SIM smartcard is described below.

![File structure diagram]

Figure 4: File structure for DM bootstrap data on SIM smartcard or 2G UICC

D.2.3 Access Method
SIM commands Read Binary and Update Binary, as defined in [TS151.011], are used to access bootstrap data.

D.2.4 Access Conditions
The ME is informed of the access conditions of the bootstrap file by evaluating the “private” and “modifiable” flags in the corresponding DODF-bootstrap files structure. When one of these flags is set cardholder verification is required. The CHV1 MUST be verified as defined in [TS151.011] when the "private" or "modifiable" flags are set.

Access conditions for files are proposed in the section D.4.

D.2.5 Requirements on the SIM or 2G UICC
To support the DM smartcard bootstrap on the SIM or 2G UICC, the ME MUST perform the following steps:

- Read EF (DIR) to evaluate the PKCS#15 application template and find the file identifier (and path of the PKCS#15 DF),
- Select PKCS#15 DF (indirect selection), as defined in [TS151.011],
- Read ODF,
- Read DODF-bootstrap to locate the DM_Bootstrap file,
- Read the bootstrap file
D.3 Bootstrap data on UICC activated in 3G mode

D.3.1 Access to the file structure
To select the PKCS#15 application, the ME:

- MUST evaluate the PKCS#15 application template – i.e. PKCS#15 AID - present in the EF (DIR),
- MUST open a logical channel using MANAGE CHANNEL command as specified in [TS102.221],
- MUST select the PKCS#15 ADF using the PKCS#15 AID as parameter of the SELECT command, using direct application selection as defined in [TS102.221].

DM_Bootstrap file will be located under the PKCS#15 ADF.

D.3.2 Files Overview

![File structure for DM bootstrap data on 3G UICC]

Figure 5: File structure for DM bootstrap data on 3G UICC

D.3.3 Access Method
UICC commands Read Binary and Update Binary, as defined in [TS102 221], are used to access bootstrap data.

D.3.4 Access Conditions
The ME is informed of the access conditions of provisioning files by evaluating the “private” and “modifiable” flags in the corresponding DODF-bootstrap files structure.

In the case where one of the above mentioned flag is set, cardholder verification is required. The ME must evaluate the PIN references that must be verified as defined in [TS102.221] i.e. evaluate the FCP

Access conditions for files are proposed in section D.4.

D.3.5 Requirements on the 3G UICC
To support the DM smartcard bootstrap on the 3G UICC, the ME MUST perform the following steps:
- Select PKCS#15 file structure as specified in D.3.1.
- Read ODF to locate the DODF-bootstrap,
- Read DODF-bootstrap to locate the DM_Bootstrap file,
- Read the bootstrap file

D.4 Files Description

All files defined are binary files as defined in [TS102.221]. These files are read and updated using commands related to the application they belong to.

D.4.1 Object Directory File, EF ODF

The mandatory Object Directory File (ODF) ([PKCS#15], section 5.5.1) contains pointers to other EFs, each one containing a directory of PKCS#15 objects of a particular class (e.g. DODF-bootstrap). The File ID is specified in [PKCS#15]. The card issuer decides the file size. The EF (ODF) can be read but it MUST NOT be modifiable by the user.

In the case of SIM or UICC, the EF (ODF) is described below:

<table>
<thead>
<tr>
<th>Identifier: default 0x5031, see [PKCS#15]</th>
<th>Structure: Binary</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>File size: decided by the card issuer</td>
<td>Update activity: low</td>
<td></td>
</tr>
</tbody>
</table>

Access Conditions:

- READ ALW
- UPDATE ADM
- INVALIDATE ADM
- REHABILITATE ADM

Description

See [PKCS#15]

D.4.2 Bootstrap Data Object Directory File, EF DODF-bootstrap

This Data Object Directory File provisioning contains directories of provisioning data objects ([PKCS#15], section 6.7) known to the PKCS#15 application.

The File ID is described in the EF (ODF). The file size depends on the number of provisioning objects stored in the smartcard. Thus, the card issuer decides the file size.

<table>
<thead>
<tr>
<th>Identifier: See ODF</th>
<th>Structure: Binary</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>File size: decided by the card issuer</td>
<td>Update activity: low</td>
<td></td>
</tr>
</tbody>
</table>
Access Conditions:

<table>
<thead>
<tr>
<th>Action</th>
<th>Access Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>ALW</td>
</tr>
<tr>
<td>or CHV1 (SIM, See section D.2)</td>
<td></td>
</tr>
<tr>
<td>UPDATE</td>
<td>ADM</td>
</tr>
<tr>
<td>INVALIDATE</td>
<td>ADM</td>
</tr>
<tr>
<td>REHABILITATE</td>
<td>ADM</td>
</tr>
</tbody>
</table>

Description

See hereafter and [PKCS#15]

The EF (DODF-bootstrap) MUST contain information on provisioning objects:

- Readable label describing the provisioning document (CommonObjectAttributes.label). The ME could display this label to the user.
- Flags indicating whether the provisioning document is private (i.e., is protected with a PIN) and/or modifiable (CommonObjectAttributes.flags). The card issuer decides whether or not a file is private (it does not need to be if it does not contain any sensitive information)
- Object identifier indicating a DMbootstrap object and the type of the provisioning object (CommonDataObjectAttributes.applicationOID)
- Pointer to the contents of the provisioning document (Path.path)

The EF(DODF-bootstrap) MUST contain the types of provisioning documents (indicated using object identifiers) to be used by the ME. The Bootstrap type is described hereafter.

A dedicated OID is required and defined for each provisioning file:

- Bootstrap OID = { joint-isu-itu-t(2) identified-organizations(23) wap(43) DMbootstrap(x-oma-dm:bootstrap) DM_Bootstrap(1) }

The ME MUST use the OID to distinguish the DODF-bootstrap from any other DODF. The EF(DODF-bootstrap) can be read but it MUST NOT be modifiable by the user.
D.4.3 EF DM_Bootstrap

Only the card issuer can modify EF DM_Bootstrap

Setting all bytes to ‘FF’ initialises EF DM_Bootstrap.

<table>
<thead>
<tr>
<th>Identifier: See DODF</th>
<th>Structure: Binary</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>File size: decided by the card issuer</td>
<td>Update activity: low</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Access Conditions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ ALW</td>
</tr>
<tr>
<td>or CHV1 (SIM, See section D.2)</td>
</tr>
<tr>
<td>or Universal / application / Local PIN (UICC, See section D.3)</td>
</tr>
<tr>
<td>UPDATE ADM</td>
</tr>
<tr>
<td>INVALIDATE ADM</td>
</tr>
<tr>
<td>REHABILITATE ADM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains a DM bootstrap message</td>
</tr>
</tbody>
</table>

The contents of the bootstrap message are separately defined in section 5.4.