

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

EFI Test Class
Candidate Version 1.1 – 9 Jun 2004

Open Mobile Alliance
OMA-WAP-EFITEST-V1_1-20040609-C

Continues the Technical Activities
Originated in the WAP Forum

OMA-WAP-EFITEST-V1_1-20040609-C Page 2 (15)

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of
this document and the information contained herein, and makes no representations or warranties regarding third party IPR,
including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you
must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in
the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

OMA-WAP-EFITEST-V1_1-20040609-C Page 3 (15)

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

Contents
1. SCOPE..4
2. REFERENCES ..5

2.1 NORMATIVE REFERENCES..5
2.2 INFORMATIVE REFERENCES...5

3. TERMINOLOGY AND CONVENTIONS..6
3.1 CONVENTIONS ...6
3.2 DEFINITIONS..6
3.3 ABBREVIATIONS ..6

4. INTRODUCTION ...7
4.1 TEST CLASS ACCESSIBILITY...7
4.2 TEST CLASS IMPLEMENTATION..7

5. SCRIPT TEST SERVICES...8
5.1 SCRIPT_COPYCONTAINER..8
5.2 SCRIPT_CONTINUAL ...9
5.3 TEST OF THE EFI SCRIPT API FUNCTIONS ..10

5.3.1 Containers (WMLScript only) ...10
5.3.2 Attributes and Properties..10
5.3.3 Service discovery ...10
5.3.4 Services..10
5.3.5 Restrictions of terminals ..10

6. MARKUP API TEST FUNCTIONS..11
6.1 EFI_GETCONTENT ...11
6.2 TEST OF THE MARKUP API FUNCTIONS ..11

6.2.1 Parameters..11
6.2.2 Service discovery ...12

7. ATTRIBUTES AND PROPERTIES..13
7.1 ATTRIBUTES OF THE UNIT ..13
7.2 PROPERTIES OF THE CLASS REALISATION...13
7.3 ATTRIBUTES OF THE BROKER ..13

APPENDIX A. STATIC CONFORMANCE REQUIREMENTS..14
APPENDIX B. CHANGE HISTORY (INFORMATIVE)..15

B.1 APPROVED VERSION HISTORY ...15
B.2 DRAFT/CANDIDATE VERSION 1.1 HISTORY ...15

OMA-WAP-EFITEST-V1_1-20040609-C Page 4 (15)

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

1. Scope
The Wireless Application Protocol (WAP) is a result of continuous work to define an industry-wide specification for
developing applications that operate over wireless communication networks. The scope for the Open Mobile AllianceM is to
define a set of specifications to be used by service applications. The wireless market is growing very quickly, and reaching
new customers and services. To enable operators and manufacturers to meet the challenges in advanced services,
differentiation and fast/flexible service creation the Open Mobile Alliance defines a set of protocols for the transport,
security, transaction, session and application layers. For additional information on the WAP architecture, please refer to
“Wireless Application Protocol Architecture Specification” [WAPARCH].

External Functionality (EF) is a general term for components or entities with embedded applications that execute outside of
the Wireless Application Environment (WAE) or other user agent, and conform to the EFI requirements. The External
Functionality can be built-in or connected to a mobile terminal. This connection can be permanent or temporary.

This document defines the EFI test class. The basic idea of this test class is to allow the testing and certification of the EFI
framework with a minimum set of functions. These functions should be accessible from WAP applications during the
certification tests.

The functions of the test class and the corresponding attributes and properties (the test class) should be implemented in a
mobile terminal undergoing EFI interoperability testing. This will allow the development of an EFI interoperability test suite
that is the same for every mobile terminal under test.

OMA-WAP-EFITEST-V1_1-20040609-C Page 5 (15)

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

2. References
2.1 Normative References
none

2.2 Informative References
[IOPProc] “OMA Interoperability Policy and Process”. Open Mobile Alliance. OMA-IOP-Process-v1_0.

URL:http//www.openmobilealliance.org/
[EFI] “External Functionality Interface Framework”. Open Mobile Alliance. OMA-WAP-EFI-v1_1.

http://www.openmobilealliance.org/
[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.

http://www.ietf.org/rfc/rfc2119.txt
[RFC2234] “Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell.

November 1997. http://www.ietf.org/rfc/rfc2234.txt
[WAPARCH] “WAP Architecture”. WAP Forum. WAP-210-WAPArch. http//www.openmobilealliance.org/

OMA-WAP-EFITEST-V1_1-20040609-C Page 6 (15)

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

3. Terminology and Conventions
3.1 Conventions
This is an informative document, which is not intended to provide testable requirements to implementations.

3.2 Definitions
Application The executable or interpretable code that is running within the application environment (such as

WAE); an application may use various APIs to access EFI services.

Broker The conceptual entity that exists between the EF Units, EF Class Agents and the EFI AI. The EF
Broker maintains the list of available functionality and routes requests to the correct EF Unit or EF
Class Agent or handles them itself.

Class The collection of all EF Units and EF Class Agents that share the same functionality according to the
same Class Specification.

Class Agent The conceptual active element that provides added functionality on the basis of EF Units of the same
EF Class Realisation.

Class Realisation The collection of EF Units and optionally the EF Class Agent that belong to the same EF Class and
are available to a particular mobile terminal.

Class Specification The definition of services that are provided by every EF Unit that belongs to the given class and
services provided by the EF Class Agent.

EFI Acronym for External Functionality Interface. The term EFI is used as a term in itself to collectively
name all the elements of EFI conceptual architecture

Implementation The software and hardware that is used in the particular terminal to impleent the functionality

Mobile Terminal The physical unit where the WAE executes.
Service The specified functionality provided by one of the servers: EF Broker, EF Class Agent or EF Unit.

Unit The conceptual component that resides in or outside the mobile terminal and provides access to the EF
Services on the EF Entities.

3.3 Abbreviations
AI Application Interface.
API Application Programming Interface
EF External Functionality
EFI External Functionality Interface
EFE External Functionality Entity
OMA Open Mobile Alliance
OMNA Open Mobile Interim Naming Authority
TOG The Open Group (the company responsible for WAP interoperability testing)
WAE Wireless Application Environment
WAP Wireless Application Protocol
WMLS Wireless Markup Language Script

OMA-WAP-EFITEST-V1_1-20040609-C Page 7 (15)

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

4. Introduction
The test class should help to test the implementation of the EFI framework within different terminals. If the functions of this
test class are implemented in every EFI terminal, the EFI framework implementation of all terminals can be fully tested with
the same set of test scripts.

The definition of the test class contains the following:

• Definition of fixed attributes and properties

• Services for Script API (2 services) and Markup API (1 service)

This is enough to basically test all the functions that are defined in the EFI framework.

4.1 Test Class Accessibility
The test class need only be accessible during the test phase. It is not necessary for the test class to be a fixed part of every
terminal. If a terminal is able to dynamically load classes, it can load the test class only for the testing purposes.

If the test class is a fixed part of the terminal, there is a risk of “denial of service” because every test class contains an
asynchronous service that can be started and continues running (including usage of hardware resources) until a timeout
occurs. Therefore, it is recommended that a permanently installed EFI test class only be accessible in a terminal in “test
mode” (e.g. a switch must be activated or the input of a key sequence should switch the terminal into a test mode).

4.2 Test Class Implementation
Every implementation of the test class (class realisation) should contain at least three units: two visible units and one
invisible unit. With the two visible units, the ability to call functions from different units can be tested. With the invisible
unit, the ability to call functions from an invisible unit can be tested.

Because the name of an invisible unit is not known, the name of the invisible unit must be clearly stated to TOG before the
tests can be done.

OMA-WAP-EFITEST-V1_1-20040609-C Page 8 (15)

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

5. Script Test Services
5.1 Script_CopyContainer
NOTE: This test function is only valid for the WMLScript API. Implementations that only support the ECMAScript
API for EFI are not required to implement this test service.

SERVICE: test / Script_CopyContainer

DESCRIPTION: This service must copy all variables of the input container into an output container.

It is not necessary to preserve the sequential order of the different name/value
parameter pairs from the input container.

PARAMETERS: Zero or more name/value parameter pairs that should be copied into the output
container.

RETURN VALUE: If the function executes correctly, it returns the output container that contains the same
variables (name/value pairs) as the input container.

If there are errors in the input parameters, the structure of the container is invalid, or
when it is impossible to copy the container (e.g. due to memory constraints), the
function returns Invalid.

EXAMPLE
// Example to call with invoke function

 var cont; // Input container

 cont=EFI.set("", "Parameter1", "123");

 cont=EFI.set(cont, "Parameter2", "456");

 OutCont=EFI.call("test/Script_CopyContainer", 0, cont);

// OutCont is the output container

OMA-WAP-EFITEST-V1_1-20040609-C Page 9 (15)

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

5.2 Script_Continual

SERVICE: test / Script_Continual

DESCRIPTION: This service executes until it is stopped or a maximum timeout occurs. During
runtime it increments an internal number periodically. If the service stops, it returns
this internal number.

This service produces some output to the MMI during runtime, so it is possible to
monitor if this service is still running or not. On a terminal with a display, it shows the
representation of the incremented internal number. On a terminal without a display it
should “beep” periodically.

This service should have a maximum timeout (MAX_TIMEOUT) of 5 minutes (300
seconds). The input parameter “timeout” of the EFI framework functions “call” and
“invoke” should be set to 0 or any other value lower than MAX_TIMEOUT. The
function’s internal timeout MAX_TIMEOUT will be used to prevent “denial of
service” attacks.

PARAMETERS: None

RETURN VALUE: A container with one parameter “number”. This parameter represents the internal
number that will be incremented from the service periodically.

If there are errors the function returns Invalid if invoked using WMLScript or throws
and EfiError if invoked using ECMAScript.

WMLScript
EXAMPLE:

// Launch the service synchronously using ‘call’

 OutCont=EFI.call("test/Script_Continual", 0, null);

// Or launch the service asynchronously using ‘invoke’

 instance=EFI.invoke("test/Script_Continual", 300, null);

// Wait for the service to complete

 OutCont=EFI.control(instance, 4, "");

// OutCont contains the internal number

ECMAScript
EXAMPLE:

// Launch the service synchronously using ‘call’

 output = Efi.call("test/Script_Continual", 0, null);

// Or launch the service asynchronously using ‘invoke’

 instance = Efi.invoke("test/Script_Continual", 300, null);

// Wait for the service to complete

 output = Efi.control(instance, 4);

// ‘output’ contains the internal number

OMA-WAP-EFITEST-V1_1-20040609-C Page 10 (15)

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

5.3 Test of the EFI Script API Functions
5.3.1 Containers (WMLScript only)
The EFI WMLScript API functions set, get, getFirstName and getNextName must be implemented for the handling
of the containers which will be returned from the functions Script_CopyContainer, Script_Continual and the
attributes and property functions. Containers can be prepared with the set functions. The get, getFirstName,
getNextName can be used to analyse if the output containers contain all necessary parameters.

5.3.2 Attributes and Properties
The EFI Script API functions getAllAttributes, getAttributes and getClassProperty must be implemented
in the terminal. They should return all the attributes and properties that are defined within this document for the test class.

5.3.3 Service discovery
The functions getUnits and query must be implemented in the terminal. They should return information about this test
class and its functions. The functions getUnits and query can gather information about the existence of the functions
from the test class. This allows the service discovery to be tested completely.

5.3.4 Services
The functions invoke, status and control must be implemented in the terminal to start the asynchronous service
Script_Continual. The function call must be implemented to start the synchronous service
Script_CopyContainer.

5.3.5 Restrictions of terminals
The test class contains both synchronous and asynchronous function calls. There might be terminals that cannot support
asynchronous function calls. To fully support the test class, these terminals must return “Invalid” when asynchronous
functions are called using WMLScript. If invoked using ECMAScript, the EfiError exception must be thrown.

OMA-WAP-EFITEST-V1_1-20040609-C Page 11 (15)

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

6. Markup API Test Functions
To test the Markup API, a service should return a document that shows all the incoming parameters on the display. Because it
is not possible to return result parameters in a container, the EFI_GetContent service must use the values of the incoming
parameters to initialise variables with the same name and value in the current browser context as described in section 8.3.2 of
[EFI].

6.1 EFI_GetContent
SERVICE: test / EFI_GetContent

DESCRIPTION: This service must return content that can be rendered by the resident browser on the
terminal.

Additionally this service must use all incoming name value pairs to set global
variables in the current browser context.

PARAMETERS: name / value pairs

RETURN VALUE: If successful, a document should be displayed in the resident browser. The returned
content must display the name and the value of the input parameters. Also for every
name / value pair a global variable ”name” with the value “value” must be initialised.

In case of error, one of the defined error codes will be returned

EXAMPLE: <!-- This example uses WML syntax -->

<wml>

 <card name="test">

 <do type="accept" label="Start">

 <go href="efi://test/EFI_GetContent?

 parameter1=123&
 parameter2=345"/>

 </do>

 <p>

 Select 'Start' to start test

 </p>

 </card>

</wml>

6.2 Test of the Markup API Functions
6.2.1 Parameters
An EFI test sequence is able to check if the Markup API can handle incoming parameters because the service
EFI_GetContent must initialise a global variable for each input parameter. The tester can then verify these global variables
are initialised correctly.

OMA-WAP-EFITEST-V1_1-20040609-C Page 12 (15)

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

6.2.2 Service discovery
The EFI functions getUnits and query can gather information about the existence of the functions from the test class. So the
service discovery can be tested completely.

OMA-WAP-EFITEST-V1_1-20040609-C Page 13 (15)

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

7. Attributes and Properties
To test the attribute functions of the EFI framework, the following attributes must be set up for the implementation of the test
class.

These values should be fixed, so it is possible to test the proper handling of the attribute functions. In the following tables, the
values are given for the test class.

7.1 Attributes of the Unit
To test the attribute functions of the EFI framework, the EF Unit attributes must be assigned the following values in the test
class implementation:

Attribute Description value

VersionMajor Major version number of the Unit or the Class Agent. “1”

VersionMinor Minor version number of the Unit or the Class Agent. “1”

Name Descriptive name of the Unit “Test”

Manufacturer Descriptive name of the manufacturer of the Unit, may
include the make and the model

“EFI test class”

7.2 Properties of the Class Realisation
The Broker must assign the following values to its attributes in the test class implementation:

Property Description Default value

MinVersionMajor Major part of the lowest version of the Unit that is available
through the Class Realisation. Note that only Units that are
visible for service discovery functions are used to calculate
this property.

“1”

MinVersionMinor Minor part of the lowest version of the Unit that is available
through the Class. Note that only Units that are visible for
service discovery functions are used to calculate this property.

“1”

MaxVersionMajor Major part of the highest version of the Unit that is available
through the Class Realisation. Note that only Units that are
visible for service discovery functions are used to calculate
this property.

“1”

MaxVersionMinor Minor part of the highest version of the Unit that is available
through the Class Realisation. Note that only Units that are
visible for service discovery functions are used to calculate
this property.

“1”

7.3 Attributes of the Broker
Because the broker is not a fixed part of the test class, there is no need to define default values within this specification.

OMA-WAP-EFITEST-V1_1-20040609-C Page 14 (15)

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

Appendix A. Static Conformance Requirements
No static conformance requirements are needed for the test class. It is the purpose of the test class to test the EFI
implementation of different terminals.

OMA-WAP-EFITEST-V1_1-20040609-C Page 15 (15)

 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20030912]

Appendix B. Change History (Informative)
B.1 Approved Version History

Reference Date Description

B.2 Draft/Candidate Version 1.1 History
Document Identifier Date Sections Description

1 Nov 2001 n/a Initial (WAP-272-EFITEST)
12 Nov 2003 all New OMA template merged

Draft Versions
OMA-WAP-EFITEST-V1_1

19 Apr 2004 Update to address consistency comments
Date on front matter updated.History updated.
CREQ reference changed to IOPProc

Candidate Version
OMA-WAP-EFITEST-V1_1

9 Jun 2004 n/a Status changed to Candidate by TP
 TP ref # OMA-TP-2004-0189-EFI-V1_1-for-candidate

