" OMAO

Open Mobile Alliance

WV-052 SSP - Server-Server Protocol Semantics Document
Approved Version 1.2 — 25 Jan 2005

Open Mobile Alliance
OMA-IMPS-WV-SSP-V1_2-20050125-A

Continues the Technical Activities
Originated in the Wireless Village Initiative = Wireless Viiage

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 2 (129)

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of
this document and the information contained herein, and makes no representations or warranties regarding third party IPR,
including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you
must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in
the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

http://www.openmobilealliance.org/ipr.html
http://www.openmobilealliance.org/UseAgreement.html

OMA-IMP

S-WV-SSP-V1_2-20050125-A Page 3 (129)

Contents
1. SCOPE 11
2. REFERENCES 12
2.1 NORMATIVE REFERENCES 12
2.2 INFORMATIVE REFERENCES 12
3. TERMINOLOGY AND CONVENTIONS 14
3.1 CONVENTIONS 14
3.2 DEFINITIONS 14
33 ABBREVIATIONS 14
4. INTRODUCTION 15
5. SERVER-SERVER PROTOCOL 16
5.1 SSP INTEROPERABILITY MODEL 16
5.2 SSP INTEROPERABILITY RULES 18
5.3 SSP SERVICE AGREEMENT AND ROUTING 18
5.4 SSP INTEROPERABILITY CASE STUDY 18
54.1 Case 1 — Two Users are Located in different Home Domains. Each Home Domain has its own SE. Two Home
DOMAINS AI€ CONMECTEAeeiiiiiiiiiiieiiie ettt e e e e e et e e e e e e st aeeeeeeeeeeasaaaseeeeeeseassaareeesesseasssaeseeesseassssareeeeseesannres 19
542 Case 2 — Two Users are Located in the same Home Domaincooovvvvveiiiiiiiiiiiiiiieeeeeceeeeeeee e 19
543 Case 3 — Domain A and C have Direct SSP Connection while Domain C Provides A with Complementary
PSE 20
544 Case 4 — Two Users are Located in different Home Domains. Each Home Domain has its complementary
PSE. Two Home Domains are COMNECLEAccuveiiiieeeeieieee e et e et e e e e e e e e e etee e e eaaeeeeenaeeesentneeeennneesennneeeas 20
54.5 SPECIAl CASE PrOCESSING......eevieueieiiieiieiieeiiesitesttete et et e st e st este e st esseasseessesstesseeseenseensesssesnsesseenseanseansennsesssenseens 21
5.4.6 Two Users are Located in different Home Domains. Both Home Domains Share the same PSE 21
5.5 SSP PROTOCOL STACK 21
6. PROTOCOL INTRODUCTION 23
6.1 BASICS 23
6.1.1 TSIy (6) 4 WS RRRRRRRRRRR 23
6.1.2 B VoL Yot (o) s DO 23
6.1.3 IMIESSAEZE ..eeuvveeerieeireenieeereteesiteesteeseteaassaeasseeassaeassaesssaessseessseeasseeassaeassaeansaeassaeansaeasseesnsaeasseesnseeasseesnseaanseennsaennseenns 23
6.14 o0 00118 A7 SRR 23
6.2 SESSION PAIR VS. CONNECTIONS 23
6.3 ADDRESSING 24
6.3.1 General SSP Addressing SCREMAocuviiiieiiieiicie ettt s ee s e sae et e esteessesssessaesseenseenseennes 24
6.3.2 AdAIESS CNICOUINGeieeieiieiieieete et ete et et et et e et e s st et eeseesseaasesseesstesseenseenseanseassesseeaseenseensesnsesnnesseenseenseenes 25
6.3.3 User Addressing and Global-USEr-IDccoociiiiiieiieieiieie ettt sttt et ettt seenseenseennes 25
6.3.4 Contact List Addressing and Contact-LiSt-TDcccoriiiiiiiiiiiiiiieiieee e 26
6.3.5 Group Addressing and GIOUP-TDccccuiiriiiriieeiiieeieeeieeeiee et e st e steesteesbeessbeesbeessseesssaeesseesnseassseessseessseesns 26
6.3.6 Content Addressing and Content-IDccooiiiiiiiiiiiiee ettt ettt ettt ae e 26
6.3.7 Client Addressing and CIHENt=-ID...........cooiiiiiiiiiiiee ettt ettt ettt sb e e b e 26
6.3.8 Service Addressing and SETVICE-TDcc.ooiiiiiiiiiii ettt st sttt et et aee e 27
6.3.9 Message and MESSAZE-IDcccuieiiiiieeieiieieee ettt ettt e et et e be e b e et e s aae st e st e st enteenbeenbense e seeneenseennes 27
6.4 DATA TYPES 27
6.4.1 (o SRR 27
6.4.2 DT ettt a e s bt e e a bt e e bt e ea b e e st e e ea bt e sab e e eabeesa bt e eabeesabeeeabeesabeeenbeena 27
6.4.3 N4 Y3 PR PTRPRRSOR 28
6.4.4 L Te o) (s SRR 28
6.4.5 311001 0 RO 28
6.4.6 DALETIINIE .eeeiiiiiiiiiieee ettt e e et et e e e e e e ee it aaeeeeeeseeaaaeeeeeeesaasaaaaeeeeeeseeaatasseeesesesansaaseeeeesssansaaaeeeeeeaan 28
6.4.7 SETUCEUL ..ttt ettt e e ettt e e e e e e et e e e eeeeeeataaaeeeeeeeeaaaeaeeeseesaassaaseeeeeesaansaaseeeeesseannaeseseeeesennnneaenees 28
6.5 INFRASTRUCTURE ELEMENTS 28
6.5.1) (o1 = D) 2R 28
6.5.2 REdIreCt (HOSE) INAIMEeeeiiieiiiieiiecieeeie ettt ettt ste e st e et e e sabeessbeesssaesssaessseesssaessseesssaeasseesnseasnseesnseennseesns 28

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 4 (129)
6.6 FEATURES AND FUNCTIONS 29
6.6.1 1101 115 1 S SSSUSUPR 29
6.6.2 CONNECHION MANAZEIMEILeeutieiiiiiietieitiete ettt ettt ettt eat e et teeb e e sb e e bt e bt e stesaeesaeesbe e bt enteesteebaesbe e beenbeenseenees 29
6.6.3 Transaction MANAGEIMICNLcecvteueeieetieieesteesteetestesttesseesseesseesseeseesseeseenseessesnsesseesseesseensenssesssenssessesssesnsesnses 29
6.6.4 SESSION MANAZEIMEILeevieiietieiieieeiteetiesttesteeteeaeeteseeesstesseesseenseasseassesssesseenseensesnsesssesnsesseenseanseensenssesssensenns 29
6.6.5 SEIVICE MANAZEIMENL.euieiietieiieieeiieeitesttesteeteeteeteseeesstesseesseenseasseassesseesseenseansesnsesssesnsesseenseanseensennsenssensnens 29
6.6.6 USer Profile ManaEemENLcccvieiueeieeiieiiesieeieeiestesetestteteeteesteeseesseeseesseensesneesseesseesseenseassesssenseeseesennsennses 30
6.6.7 SEIVICE REIAY ...eeuvieiiieieiie ettt ettt ettt e s tt et e et e esseesbeesaeesee st eenseenseeasesnsesaeesseaseanseenseansenssensnens 30

7. SECURITY 31
7.1 TRUST MODELS 31
7.2 ACCESS CONTROL 31
7.3 TRANSPORT SECURITY 31
7.4 INDIVIDUAL DOMAIN SECURITY 31
8. TRANSACTION MANAGEMENT 32
8.1 META-INFORMATION 32
8.2 STATUS PRIMITIVE 32
8.3 ASYNCHRONOUS TRANSACTION 33
8.4 GENERAL ERROR HANDLING 33
8.5 INVALID TRANSACTION 33
8.6 UNKNOWN TRANSACTION 33
8.7 GENERAL STATUS CODE 34
9. SESSION MANAGEMENT 35
9.1 ACCESS CONTROL 35
9.1.1 SeSSI0N ESTaAbBIISIIMENT........coiiiiiiiiiiiiiiiiieee et e e e e e et e e e e e e e et e e e e e e e seeaaareeeeeeseennnnaeeeas 35
9.1.2 SESSION IMAINTENANCEeeeeeiieiiiiieeeeeeeeeiteeee e e e eeeet et e e e eeeeeaaeeeeeeeeeesaaeeeeesessaaaaareeeeesseassasseeeeesseansareseeesseennerenes 37
9.1.3 SESSION TEIMUMATION.eviiiiiieeiiieeeeeeeeeetee e e e e e e eeet et e e e eeeeeataaeeeeeeeseaaaaeeeeeessaasaaseeesessessaaseeeeesseannaareseeesseannrrenees 37
9.14 SeSSI0N RE-EStADIISIIMENL.oeiiiiiiiieiic e et e e e e e e e e e e eenaeeeeeteeeeennneeeeenneeens 37
9.2 PRIMITIVES 37
9.2.1 The "SendSecretTOKEN" PIIMILIVEooiuviiiiiieeeeeeiee ettt eete e e et e e et e e e e e e e eaeeeeeenneeeeenreeeeensreeeennnes 37
9.2.2 The “LogINREQUEST” PIIMILIVE.ecctieieeiiesiiesieeiteeiesteste sttt e e ttestee st ebeeaessaesseesseesseenseessesssensaenseensesnsennnes 38
9.2.3 The “LogINRESPONSE” PIIMILIVEc.eeiuieeiieiieiieieeieetesitestt ettt e tae st e seeseeaesseesseesseesseenseessesssesseenseenseensesnses 38
9.2.4 The “LogoutReqUESE” PIIMITIVE........eciieeieiieiieie et ste sttt ettt et et et e e e e sseesseesseesseenseensesssensaenseeseensesnnes 39
9.2.5 The “DISCONNECE” PIIMITIVE ...eeeiiiiiiiiiiiiieeeeeeeiee e e e e eeete et e e e e eeare et e e e s eesaaaaeeeeeeseessataeeeeesesesasrareeeeesssassarreeeeessan 39
9.2.6 The “KeepAlIVEREQUESE” PIIMITIVEeiiiiiiiieiiieiieeeieeeteeetie et e steesteeeteesbeessteessbeessseessseessseesnseassseesnseessseesns 39
9.2.7 The “KeepAlIVERESPONSE™ PIIMITIVE ...cc.viiiiiiiiieiiieiiiecieeeieeeteesteesteeeteesbeessteesbeesaseessseessseesnseesnseesnseessseesns 40
9.3 TRANSACTIONS 40
9.3.1 The “LOZIN" TTANSACTION ..ccuteeutiiuiieiieetieit ettt sttt ettt ettt e et e s bt et e e bt et e saeesaeesbe e bt enteeeteebeenbe e beenbeensesnees 40
932 The “LogOUL” TTANSACTION ...eeutiiitiiiieetieitieteeste ettt sttt ettt et e et e s bt e bt et e et e saeesbeesbe e bt enteesteebeenbe e beenbeenseenees 41
9.3.3 The “DiSCONNECT” TTANSACTIONccuvviiieeeeeeeerieeeeteeeeeeee e e et e e eeeeeeeeeteeeeeetreeeeeaeeeeeseeeeeaeeeseenseeseeseeeeennreeeennes 42
9.3.4 The “KeePALIVE” TIANSACHON.eecueeeieetieriieteeteeteetesttesteeteeteesteesaesseesseeseessesseesseesseasseanseassesssenseesseensessesnses 42
9.4 STATUS CODE 43
94.1 CLOZIN TTANSACLION. ... eeiuietietieeieeteettesttesteesteeteeteseeesseeseesseesseessessaesseesseensesnsesnsesseesseanseanseassesssenseeseesennsennses 43
94.2 “Logout” / “DiSCONNECt” TTANSACTIONvevieiieieeiieiiesiiesitete et eteesaestee st eseeaessaesseesseesseesseassesssesseenseessesnsesnses 43
10. SERVICE MANAGEMENT 44
10.1 SERVICE STRUCTURE 44
10.2 GENERAL 44
10.3 SAP FEATURE 44
10.4 CoMMON IMPS FEATURE 45
10.5 PRESENCE FEATURE 46
10.6 IM FEATURE 46
10.7 GROUP FEATURE 47
10.8 PRIMITIVES 48
10.8.1 The “GetServiceReqUESt” PIIMILIVEcccvevieriieiieiieieeiiesiiesieeie et see sttt et esteeeaestaesseesseesesnsesnnesseesseenseenes 48
10.8.2 The “ServiCeLiSt” PrIMItIVEccveiiiereiiiiieee et eeeee et eeee e et e e et e e et eeeeaeeeeeaeeeeeeaeeeeeeaneeeeenseeeentreeeens 48
10.8.3 The “ServiceNegotiation” PIIMITIVEcveeierieriieieeieeiesiesieesieesteseeseesteesseeseeessesssessaesseesseessesnsesssesseesseenseenes 48

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 5 (129)

10.8.4 The “Service Agreement” PriMItiVeccceeoieeriieiiieeiiieiiieereesreeeree e eveesreesereesveeneeeas
10.9 TRANSACTIONS

10.9.1 The “GetAvailableService” TranSaCtiON........cccuuvveeeieeiieiieeeeeeeeeeeeeeeeeeeeeeraeeeeeeeeeesanaeeees

10.9.2 The “Servicelndication” TranSaACtIONeevvireerueeeeeireeeeeeeeeeeereeeeeteeeeeeeeeeeeeeeeeeneeeas

10.9.3 The “SetServiceAgreement” TTranSaACtONecuvecvreierieriertierieereeeeseeseeeseeeeeesessaesseens

10.10 STATUS CODE

11. INTEROPERABILITY MANAGEMENT - USER PROFILE MANAGEMENT
11.1 USER PROFILE

11.2 PRIMITIVES

11.2.1 The “GetUserProfileRequest” PIImItiVecccveieuieeiiieiiiieeiie et svee e e

11.2.2 The “UserProfile’” PrimitiVe.........cccueiiiieeiieiiieeiie et eiee s et e e e ereesveeseseessvaeensees

11.2.3 The “UpdateUserProfileRequest” PIrimitiVeccceeeeveeiiiieeciieiiieeiee e evee e
11.3 TRANSACTIONS

11.3.1 The “GetUserProfile” TranSactioncccueecueeecuieirieeriiiesiiieeiteesieeeieesreeeseesseessseessseesssens

11.3.2 The “UpdateUserProfile” TranSactionccccceeieueerereeriieeiieesiieeeieesreeeveesseeseveesveessnens

11.4 STATUS CODE

12. SERVICE RELAY — COMMON IMPS FEATURES

12.1 OVERVIEW

12.2 PRIMITIVES

12.2.1 The “SearchRequest” PrIMItIVEc.cccuereieriieriieiieieeieeie ettt enseenneseeens
12.2.2 The “SearchResponse” PrimitiVe.........cccccverieriieriieiieieeiesienieesie e seesee s eeeenseeneesseens
12.2.3 The “StopSearchRequest” PrimitiVec..cccveeeuiiiriieeiiieiiiieeciie sttt ereesvee e e sveeeenees
12.2.4 The “InviteRequest” PrimitiVecccccoiieiiieiiieeiieeite ettt etee st sre e e e sbeeseveessveeeeeeas
12.2.5 The “InviteResponse™ PIIMItIVEccceecuiiiriieeiiieiiieeiee ettt sre e e sve e esveeeeeees
12.2.6 The “InviteUserRequest” PrimitiVeccceoieeeiieiiieeiie e ciee et eree e seveesve e
12.2.7 The “InviteUserResponse” PIrIMItIVEccvvereuiiiiieeiiieiiiieeieesieeeiee e e eveesvee e e sveeeeeees
12.2.8 The “CancellnviteRequest” PrimitiVe.........cccevieriieciieiienierienieesie et eee e seeens
12.2.9 The “CancellnviteUserRequest” PrimitiVecceceevuerierieniienienie e sie e eee e senns
12.2.10 The “VerifyIDRequest” PrimitiVe.........cccevveriirierienienieiteie et
12.2.11 The “VerifyIDReSponse” PrimitiVecceeruirierienieniieiieee et sieeseeese e seeeseeeneeenes
12.2.12 The “GetReactiveAuthStatusRequest” Primitive.........ccveevveeveeienienienieiece e
12.2.13 The “GetReactive AuthStatusResponse” Primitiveccecveeeeierienienenieeieseeeenn
12.3 TRANSACTIONS
12.3.1 The “GeneralSearch” TranSacCtion...........ccuceeveeeiierrieerireeeiieeeiteessreesreesseesseessseessseesseesssens
12.3.2 The “StopSearch” TranSaCtioNccueecuieiruieeiiieiiieeieeeiteeesteessteesreesreesseesseessseessseenssens
12.3.3 The “Invitation” TranSACtIONcccuieiriieeirieiiieeieeeieeeteesteeeteesreesreesbeeesseessseessseessseenssens
12.3.4 The “Cancellnvitation” TranSaCtioncccveeeuieiriierrieeiiiieeiteesireeeieesreesreessseessseesseenssens
12.3.5 The “VerifyID” TranSacCtionccceecveeiuieirieeeiiieeieeereesiteeeteesseesseesseessseesseessseessseenssens
12.3.9 The “GetReactive AuthStatus” Transaction.............ceeceereereereeseesieeeeeseeseeeseeeeeeseseenenens
12.4 STATUS CODE
12.4.1 “GeneralSearch” TranSaCtiON...........cceecuerierierieriieieeieseeseesteesseereseeseeesseeseenseensessaesseens
12,42 “StopSearch” TranSaCtiONccecveevuereueriertiertieteeteetessaeseesseesseesesaesseesseeseanseassessaesseens
12.43 “Invitation” TTaNSACHON.cc.vertierieeteeteeiertteteeteeteetessaesseeseeseensessaesseesseenseenseansessaenseens
12.44 “Cancellnvitation” TranSaCtiON.........cccveeruieirieereiieiiieeieeeiteeesteesreesveesreessreesseessseessseenssens

12.4.5 VerifyWVID” Transaction
13. SERVICE RELAY - CONTACT LIST FEATURES

13.1 OVERVIEW

13.2 PRIMITIVES

13.2.1 The “CreateContactListRequest” Primitivecccueeeveeiiiieeiiieiiieeeiie e
13.2.2 The “DeleteContactListRequest” Primitivecceceeeerierieniienieie e
13.2.3 The “GetContactListRequest” PrimitiVe..........ccecieevieierienieniiereeie et
13.2.4 The “GetContactLiStResponse” PrimitiVeccceecveeeierieriesiierieee e siesieesee e eee e senns
13.2.5 The “GetListMemberRequest” PrimitiVe...........ccvecvieierierieniierieeie et seeee e eeae e
13.2.6 The “AddListMemberRequest” PrimitiVe..........cccvecveeierienieniierieeie et
13.2.7 The “RemoveListMemberRequest” PrimitiVec.cecvevierierieenenieeiesieseeie e eve e
13.2.8 The “ContactListMemberResponse” Primitive........cccccveevueeeciieiiieeniiieeieeeieeeieesvee e

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 6 (129)

13.2.9 The “GetListPropsRequest” PrimitiVecccveevuieeiiieeiiieniieciee et sveeeveesvee e
13.2.10 The “SetListPropsRequest” PrimitiVe.........ccveeeveeeciieiiieeeiie e
13.2.11 The “ContactListPropsResponse” Primitiveccccecveeerieiieeeciieiieeeiee e
13.2.12 The “Create AttrListRequest” Primitivecccceovveiirierienieieecieeee e
13.2.13 The “Delete AttrListRequest” Primitiveccceecveeeirierienieeee e
13.2.14 The “GetAttrLiStRequest” PrIMItiVec.ecveriierieeieiieriericee et
13.2.15 The “GetAttrListResponse” PrimitiVec.ccceereeeierierienieeeie et
13.3 ' TRANSACTIONS
13.3.1 The “CreateContactLiSt” TranSaCtONcccuveeeeeveeeeireeeeeieeeeeereeeeeieeeeeeereeeeeeeeeeeenns
13.3.2 The “DeleteContactList” TranSaCtiONccoevuuvvrieeeiiiiiieeeeeeeeeeeirreeeeeeeeeeiaareeeeeeseenannes
13.3.3 The “GetContactList” TranSaCtION...........cceiviiiiureiieeeeiiiiiieeeeeeeeeeieeeeeeeeeeeiaaeeeeeeeeeennnnes
13.3.4 The “GetListMember” TranSaCtiON.............coiieuuuriieeeeiiiiieeeeeeeeeeeirareeeeeeseesinreeeeeeseenanees
13.3.5 The “AddListMember” TranSaCtiONccooevvuverieeeeiiiiieeeeeeeeeeeiiereeeeeeeeesaaeeeeeeeseesannes
13.3.6 The “RemoveListMember” TranSactioncccuuvveeeeiiieiueeeeeeeeieeiiieeeeeeeeeeiiaeeeeeeeseennnnes
13.3.7 The “GetListProperties” TransSacCtionccccveeeveeeereerrieeriieesireeereesreesseesveeeseesseessseens
13.3.8 The “SetListProperties” Transaction............cceecvereerieerueeiueeeesiesieesseessessresreseesseesseessenns
13.3.9 The “Create AttributeList” TranSaCtioncccueeeeeuviieerreeeeeieeeeeeeeeeeeeeeeeeereeeeeeveeeenns
13.3.10 The “Delete AttrList” TransSaCtiOncccvveieeuveeeieirieeeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeereeeens
13.3.11 The “GetAttrList” TranSaCtiON.........cc.eeieeiueeeieeeeeeeereeeeeeeeeeeeeeeeeereeeeeaeeeeeereeeeereeeeas
13.4 STATUS CODE
13.4.1 Contact List TranSaCtiONS..........cccueeeeeiuvieeeieeeeeeiteeeeeiteeeeeereeeeeieeeeeeetreeeeeaeeeeeireeeeeerreeeennns
13.4.2 Attribute List TIanSACtIONS.uveiiiiiiiiiieeieeeeeiieieeeeeeeeeeeee e e e e e eetareeeeeeseeaaaaeeeeeeseenaeees

14. SERVICE RELAY - PRESENCE FEATURES

14.1 OVERVIEW

14.2 PRIMITIVES

14.2.1 The “SubscribeRequest” PrMItIVEcccierciiriiiieeiiieiiieeieecieeeieesieeeveesveeeveesveeennee s
14.2.2 The “AuthorizationRequest” PrmItiVec.ccverieriieriieieniesieieeieeie e
14.2.3 The “AuthorizationResponse” PrimitiVe..........ccecveriieiirienienieniieseesiesee e seeeseeesee e
14.2.4 The “UnsubscribeRequest” PrmItiVecccoeieriieriieiiieieeiesiesieeeee e
14.2.5 The “PresenceNotification” PrimitiVe..........ccoecverieriieriieienienienieeseeie e see e seeesee e
14.2.6 The “GetWatcherListRequest” PrimitiVe.........ccecveriieeiieieiienienieeseee e
14.2.7 The “GetWatcherListResponse” Primitivec.ccceevueeeienienieniienieeie e sieseeeieeeees
14.2.8 The “GetPresenceRequest” PIrIMItiVecccuveivieeeiiieiiieniiecieeeieesieeereesveeeveesveeenne s
14.2.9 The “GetPresenceResponse” PIimitiVe........ccveeeueeeiiieiiiieniieiiieeiiesieeeieesieeereesveeenne s
14.2.10 The “UpdatePresenceRequest” PrimitiVe.........cceeecveeicieeeciieiiieeiie e
14.2.11 The “Cancel AuthRequest” PrimitiVecccuveiviieeciieiiiieeiie et
14.2.12 The “SuspendRequest” PrimItiVe.........cccveeeiieiiieeiiie et
14.3 TRANSACTIONS
14.3.1 The “Subscribe” TranSaCtiONcceevvereueriierieriierieeieeteseesteesseesseessesseseeesseesseenseenseans
14.3.2 The “Reactive Authorization” TranSaction.............cccvecveeiereerierieeneesesee e seeseeesseeneeens
14.3.3 The “Unsubscribe” TranSaCtiOncc.eeeververieriierieeieeeeseesteesseenseessessesseesseesseessessseens
14.3.4 The “PresenceNotification” TranSaction.............ccvevueerueecuereereerieesreenieseeseeseeeseeesseeneeens
14.3.5 The “GetWatcherList” Transaction..........c.cccerverieriierieeiieeiesiesieesreesse e seeseeesseesseeneeens
14.3.6 The “GetPresence” TranSaCtioNcccueeeeueerciieriieeeiieesieeeieesreeeseesseesseessseesseesseessseens
14.3.7 The “UpdatePresence” TranSaCtionccceccveeeeueeerieesrieeniieesieeeireesreessseesseessseessseessseess
14.3.8 The “CancelAuthorization” TranSacCtioN............cceeeeveeerieeriieerireeeiriesieeereesreeeereesseeeseens
14.3.9 The “Suspend” TTanSaACtIONccceereueeriieeriiieeiieeeieesieeeteesreeeseessseesseessseessseessseessseens
14.4 STATUS CODE
14.4.1 “Reactive Authorization” TranSaCtioNc.eeeeueeeeveerrieeniieesireeeieesreesseesseeeseesseesseens
14.42 “GetPresence” TranSaCtioneceerieereeeeieeieeiesieeieeteetesseesseesseenseessessesseesneesseenseenseans
14.43 “UpdatePresence” TranSaCtioncceeevereeerieriieriieieeteseeseesseesseessessesseesseesseessessseens
14.4.4 Other Presence TranSaCtionsccvecueeevereieriierientierieeteeeeseesseesseesseessessesssesssesseessesssenns

15. SERVICE RELAY - INSTANT MESSAGING FEATURES

15.1 OVERVIEW

15.2 PRIMITIVES

15.2.1 The “SendMessageRequest” PrIMItIVEcccuveecieeeiiieniiieeiiecieeeiee e eieesveeeveesveeenne s

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 7 (129)

16.

15.2.2 The “SendMessageReSPONSE” PriMItIVEc..eeeiiiiieeiieiiieeieeeiieeteeeieeeieeetaeeteesteeebeessseeesseessseeesseesnseeenseenns 91
15.2.3 The “ForwardMessageRequest” PIIMItIVEcccuiiiiiiiriiiiiieiieieeie ettt st s s 91
15.2.4 The “NeWMESSAZE” PIIMITIVEecccviiiiieiiieiieeiie ettt eetieetteeieesteeeteesteeeteesstaeesseessseeesseesssesessessseeessesssssessseenns 92
15.2.5 The “MessageDelivered” PIIMITIVEc.eeieriieriieieeieeieseesieeieetesaesee st eteeseeessessaessaesseenseesesnsesnnesseesseenseenes 92
15.2.6 The “MessageNotification” PrIMItIVE........cccuevieriieiiieieeiesiesieeieeieseeste st et eseeeseeseaeesaesseeseesesnsesnnesseesseenseenes 93
15.2.7 The “GetMessageReqUEST” PIIMItIVEc.cevieriieiieiieieeiiesiieieeie et see sttt et e seaestaesseeseeseensesnnesseesseenseenes 93
15.2.8 The “SetMessageDeliveryMethod” PrimitiVe.........ceeveeierieniieriieie ettt eae et e e seeaesaeseeesneeseenes 93
15.2.9 The “GetMessageLiStREqUESt” PIIMIIVEccuveevieiieieeieiiesieie ettt et eeae st beeseeaesnaesneesneenseenes 94
15.2.10 The “GetMessageLiStReSpONSe” PrIMItIVEc.eeveruieriieiieiieieeie ettt ee sttt esteeeaesseesseeseenseennes 94
15.2.11 The “RejectMessageRequest” PrIMITIVEcooueiiiiiiiieiieieeeteeet ettt 94
15.2.12 The “DeliveryStatuSReport” PIIMITIVEcccviiiiieiiieiiiesie ettt ettt aeesteeesaaeestaeeseeesseeseeennes 95
15.2.13 The “BlockUSErReqUESt” PIIMITIVEcccuiieiiiiiiieiieciieeie ettt esite et e etee et eeaeeetaeeaaessaeesaeesseenseeennas 95
15.2.14 The “GetBlockedReqUESE” PIIMITIVEccuvieeiiiiiiieie ettt eiee et e eaeeeteeesaeeetaeesaaessaeeseeesseenseeenses 96
15.2.15 The “GetBlockedReSpONSE™ PIIMItIVE......cccviiiiiierieeiieeie et erte et eee et e etee et eesaeeetaeesaaeesaeeseeesseeseeenses 96
15.3 TRANSACTIONS 96
15.3.1 The “SendMessage” TraNSACONccververeiertietieteeteetesteesteeteestestesseesseesseenseasseassessaesseeseesessesnsesseesseenseenes 96
15.3.2 The “ForwardMessage” TranSaCtiON........c.ceveruiertieieeieeiestienteeteetesaeseeesseesseenseassesssessaesseenseessesnsessnesseesseenseenes 97
15.3.3 The “PuShMessage” TrANSACLIONcccveeuierriereieeieieeteestesteenseeseesessesseesseenseenseasseassessaesseeseessesnsessesseesseenseenes 97
15.3.4 The “MessageNotification” TTaNSACHION.cvervieriieieeiertierteeteetestestesteesteesteeseeessessaesseeseesesnsesnsesseesseenseenes 98
15.3.5 The “GetMesSSage” TTANSACHIONeeverieeiieriiertieteeieeteettesseesseeseesesaesseesseeseanseasseassessaesseenseesesnsesssesseesseenseenes 98
15.3.6 The “SetMessageDeliveryMethod” TranSaction.........c.ecueruierierierriereesieseesteeeeeeeeseseaesseesseesseesessesseesseenseenes 99
15.3.7 The “GetMessageList” TTANSACTIONcevutirtieriietieieeiteet et tert ettt sttt e ettt et e es e sbtesbee bt enbeentesaeeseeesbeenaeenee 99
15.3.8 The “RejectMessage’ TTraNSACTIONc.ueeruieerreeitieiiteeeiteeesteeeteesteeeseesseessseessseessseesseessseessseessseessseessseessesssses 100
15.3.9 The “NotifyDeliveryStatuSReport” TranSaCtiONcccuveiruieeiiieiiiieeiiesteeeteesieeeteesreeeseesreessreesseessseessseesssens 100
15.3.10 The “BloCKUSET” TTraNSACIONeeutieiieetieitieiteeteete ettt sttt ettt et ette st e e b e bt et e sstesetesbeesaeenbeenteentesneesaeens 100
15.3.11 The “GetBlockedList” TTanSaACtION.......cc.veitieriiiiiie ittt ettt ettt et ettt st satesbeesae et et e estesneesaeens 101
15.4 STATUS CODE 101
15.4.1 “SendMessage” TrANSACLIONcc.eerueerveriteeieeiesteertteteeteeteesaesseeseeseesesssesssesseesseenseanseansesssesssessaesseensesnsesnnes 101
15.42 “SetMessageDeliveryMethod” TranSaCtioncceecuieruieiierierieniiesteesiestesteseeseeesseesseenseessessaesseesseeseensesnnes 102
15.43 “GetMessageList” TranSACIONccuvervieeieeieriertiertt et eteeteseesteesteeseesesssessaesseesseenseanseanseessesssessaeseesesnsesnnes 102
15.4.4 “RejectMessage” TraANSACLIONcc.verueerieeeeeteeiesteestteteeeteestesstesseeseeseensesssesssesseesseenseanseensesssesssessaesseensesnsesnnes 102
15.4.5 “NeWMeSSaZE” TIrANSACTION. ...c...eitieriieteeiteeteeterttestteteeteetesstesstesseeseasesssesseesseesseeseanseasseessesssesseesseessesnsesns 102
15.4.6 “GetMessage” TIANSACLIONcc.eeitieitiiiiitt ittt ettt et et et e st e e bt e bt esteseeesatesbee s bt e bt eateeabeeseesbeenbeenbeenseensesnees 102
15.4.7 “NotifyDeliveryStatuSReport” TTaNSACTIONcccuiiiuieeiiieiiieeiieeiteeettesteeeteesteesreesseessseessseessseesseessseesssessssens 102
15.4.8 “ForwardMessage” TTranSACHION. .. .cccueeuiiiiiieitierttett ettt ettt et e bt e bt et eeeesatesaeeste e bt eateenteeaeesbeesbeenbeenseennesaees 102
15.4.9 BlOCK TrANSACTIONS.eeutieuietietieteeteete et ettt e bttt ea et eateebee s bt e b e e bt eseeeseesaeesbee bt e bt emteenteeaeesbeenbeenbeenseeneesnees 103
SERVICE RELAY - GROUP FEATURES 104
16.1 PRIMITIVES 104
16.1.1 The “CreateGroupReqUESt” PriMItiVe......c.cccuerierieriieiieieeieeiestesieesieeie e stesee st esseesseesseeneessaesseeseesesnsesnnes 104
16.1.2 The “DeleteGroupReqUESt” PIiMItiVe......c.cocveeierieriieiieieeieeieseesiee e eieseestessee st eseenseenseessessaesseeseensesnsesnnes 104
16.1.3 The “JOINGTOUPREQUESE” PIIMITIVE ...ecuveeiieeieeiieiieiieieeteeteeieesttesteeteesesaeseesseesseeseenseenseensesssessaeseensesnsesnnes 105
16.1.4 The “JoINGToOUPRESPONSE™ PrIMILIVEeccviiiiiriieriieiieit et eieeee sttt e steete e see e et eteesseenseessessaessaenseensennsesnnas 105
16.1.5 The “LeaveGroupRequest” PIIMItIVEc..ccerierierieiieieeteeiesteesiee e eie e seessee e eseenseenseensesssesseeseesesnsesnnes 105
16.1.6 The “LeaveGroupIndication” PriMitiVec.cccieiiieeiieiitieeieesieeeieesieeeteesreesereesseessseessseessseessseessseesssessssens 106
16.1.7 The “GetJoinedMemberRequest” PIIMItIVEccveeiuiiiiieeiiieiieeeiiesieeeteesieesreesreesreesreessseessseessseessseensseas 106
16.1.8 The “GetJoinedMemberResponse” PIIMItIVEc.c.cccuiiiiiieeiiiriiiieeiiesieeeieeseeereesreeeaeesveesreesseesnseesnseenssens 106
16.1.9 The “GetGroupMemberReqUESt” PrIMITIVE.....ccciicuiieiiieiiiieeiieeieeeieesieeeieeseeereesreeseseesnbeesnseesseessseessseenssens 107
16.1.10 The “GetGroupMemberResponse” PIIMItIVEc.cccvieriiiiiieriie e eiiecieeeieesieeeieesteeeaeeseaeeaeessaeenseeens 107
16.1.11 The “AddGroupMemberRequest” PrimitiVe........cccuieiiieiieiriieeiie e eiteeieeeieeeieeeteesveeeaeesseeeeaeesraeenseeans 107
16.1.12 The “RemoveGroupMemberRequest” PrMItiVEc..ccverierieriieiieieeiesieseeie et see st esee e seaesneens 107
16.1.13 The “MemberAccesSReqUESE” PIIMITIVEocuieriiiiiiiiiciecierceie ettt ettt enseenaesnaesneens 108
16.1.14 The “GetGroupPropsREqUESE” PIIMItIVEccveeriieiiiieiiesiesiceie ettt see e e seeenseenseensesnnenseens 108
16.1.15 The “GetGroupPropsReSpPONSE™ PrIMItIVE.......cccuveeiiiiiiiierierieeiteie et eee sttt see e see et eneeessesnaenseens 108
16.1.16 The “SetGroupPropsReqUESE” PIiMItIVEccveivieiiiiiieiesiesiteit ettt et saeseesseeseeenseenseensesnaenseens 109
16.1.17 The “RejectLiStReqUESt” PIIMItIVEecveiieriieiieie ettt ettt sttt et s aesee e e sseenseenseessesnnesseens
16.1.18 The “RejectListResponse” Primitive
16.1.19 The “SubscribeGroupChangeRequest” PrmItiVec.ccoviiriiiiiiiiiieniesieeeeee et 110

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 8 (129)

16.1.20 The “UnsubscribeGroupChangeRequest” PIimitiVeoccevieiiiiiiiinienieceeee et 110
16.1.21 The “GetGroupSubStatusRequest” PIIMItIVEcc.cociierieiiieeiie et eieeeieeeieesveeeveesveeebeeseneenseeens 110
16.1.22 The “GetGroupSubStatusReSpONSe” PIIMItiVEcccuvieriieeiiieiieecie et eieeeieeereesteeeaeeseeeeaeeseaeenseeans 110
16.1.23 The “GroupChangeNotiCE” PrIMIIVEcccveiieriierieiteeiesiesie et eieeteetesttesseesseessesaeseeesseesseenseenseessesssesseens 111
16.2 TRANSACTIONS 112
16.2.1 The “CreateGroup” TIANSACLIONc.eecveeeverieriereiesieeteeteeteeeesteesseesseesesssessaesseesseeseasseassesssesssesseessesssesnsesnns 112
16.2.2 The “DeleteGroup” TIANSACLIONc.eevveeeveriereiertiesteeieeteetestesteesseesseesesssesseesseesseenseasseansesssesssesseessesssesnsesns 112
16.2.3 The “JOINGTOUP™ TTANSACTION .. .eevieiieieeeeeieseiestteteeteeteeteesaesteeseeseesesssesseesseesseenseesseanseessesssessaeseesesnsesnnes 113
16.2.4 The “LeaveGroup” TIANSACHIONcc.eerveeeierieriertiertteteeteetesstesseesseeseesesssesseesseesseenseasseenseessesssesseessesssesnsesnns 113
16.2.5 The “ServerlnitiatedLeaveGroup” TTanSACLIONcccveirueeeriieriieeiiesiteeeieesreeereesseeeseesseessseesseessseessesssses 114
16.2.6 The “GetJoinedMember” TranSACTIONeiiiiriertieiieiieie ettt ettt stee st ettt es e eaeesbeesbeenbeebeeneesaees 114
16.2.7 The “GetGroupMember’” TranSACtION.c..cccveeriieiiteeeiteeeiteeeiteessteeeteesseeeseessseessseesseeasseessseessseessseessseesssesssses 114
16.2.8 The “AddGroupMember’” TTANSACTIONccveeruieriuieeiiieiitieeieesiteeeteesseesseesseessseesseessseessseesssesssseessseesssesssses 115
16.2.9 The “RemoveGroupMember’” TTranSACtIONcc.veicuieeriieiiiieeiieiieeetiesteeeteesseessreesseessseessseessseessseessseesssesssses 115
16.2.10 The “MemberAccess” TTANSACLIONcc.ueiuieriieiiiie ittt ettt ettt et e e be e bt saeesetesbeesaeenteenteestesaeesseens 116
16.2.11 The “GetGroupProps” TraNSACHIONecveriieriietieite et ste et et eeeeteeteesseesseeseesesaesnsesseesseenseanseessesssenseens 116
16.2.12 The “SetGroupProps” TrANSACLION.cccverieriieieeiteeteetesteste et eteeaeetaesseesseesseesesaesnsesseesseenseensesssesssesseens 116
16.2.13 The “ReJECtList” TraNSACHION.c.eecvieeieeieeiereeteeteeteetestesteeteeseeesaeesaesseeseeseessesssesasesseesseanseanseessesssenseens 117
16.2.14 The “SubscribeGroupChange” TranSACtIONceeevereierierierieieeteeeeseeseesseessesaesresseesseeseeseessesssesseens 117
16.2.15 The “UnsubscribeGroupChange” TransSactiOn...........c.eecuereerieriierieeieeeeseeseesseessesseeseesseesseesseessessesssesseens 118
16.2.16 The “GetGroupSubStatus” TraNSACTIONecuieriieiieiieiieeiese ettt ete sttt e e estesaeseesseesseenseenseensesssenseens 118
16.2.17 The “NotifyGroupChange” TIraNSACLIONccvieruieerieerieeieeeseeesteeenteeestreesseesseeesseessseessseesssseesseessseessseesns 119
16.3 STATUS CODE 119
16.3.1 “CreateGroup” TraANSACTION. .. .cuvieevieiitieeitieeiteeeiteeeteeeteeeteeeseesseesseesseessseessseessseessseessseessseessseessseessseesssesssses 119
16.3.2 “DeleteGroup” TraANSACTION.ccuvieeuieiitreertieeetteesteeestteesteeeteeeseesteeeseesseessseessseessseessesssseesssesssseessseessseesssessssees 119
16.3.3 “JOINGTOUP” TTANSACLION ..euvriiriieetieiiieeitieeiteeettesteeeteeeteeeteessseeesseessseessseessseessseessseeasseessseessseessesssseenssesnsses 119
16.3.4 “LeaveGroup” TIaNSACTONcc.veitieiteeie et eteettestteste et eteetesseesseeseeseessesssesssesseesseenseenseanseessesssessaeseesesnsesnnes 120
16.3.5 Group Membership TranSACtIONSc.eecvirierierierieteeteeteetesteesteesseesesseseeesseesseeseenseenseessesssessaesseesesnsesnns 120
16.3.6 Group Properties TTaNSACHIONSccuverveeeeeeieriertiesteeteeteetesttesteesteesseesesstesstesseesseenseenseensesssesssesseesseesesnsesnnes 120
16.3.7 “ReEJECLLISt” TTANSACLION. .. .ccuvertieitieteeieeteeteeetestteteeteeteesteesaesseeseesseensesssesseesseesseenseanseansesnsesssessaeseensesnsesnnes 120
16.3.8 Group Change TTaNSACHIONS.ecueerueerieeteeteeterteesteeteeteetessaesseesseeseesesssesssesseesseenseasseanseessesssesseesseensesnsesnns 120
16.3.9 “GetJoinedMember” TTANSACLION.ccviecveeieeeiertiertieteeteeteseesteeteeseesesssesssesseesseesseenseanseessesssesseesseessesnsesnnes 120
17. STATUS CODES AND DESCRIPTIONS 121
17.1 1XX - INFORMATIONAL 121
L7101 100 — CONTIMUE ...ttt ettt sttt ettt ea e et e e ebee bt e bt e bt eseeeseesatesbe e bt e bt emteenteeaeeebeenbeenbeenseensesnees 121
17.1.2 10T — QUEUEA ..ttt ettt st b et ea e e st e s et e e e e b e eaeeb e emeemsen s e beabeebeebeeneen b et eseaneneeens 121
T7.1.3 102 — SEATTEA .eeeeteenieeeeee ettt ettt ettt st e bt e a e et e e st e s e b et e beeheeh e eneent e s e ebeebe bt ebeeneen e e s et e aneeeeenes 121
17.1.4 104 — Server QUEUECH.couiiiieiieie et e e et e e e et e e e et e e e eette e e eeaeeeeeeaaeeeeeaaeeeeetaeseesseeeeearenean 121
17.2 2XX-— SUCCESSFUL 121
17.2.1 200 = SUCCESSTULeeuiiiiiiieriecteee ettt ettt b e st b et ea et et be bt bt ebe bt et e b enbenaeenes 121
17.2.2 201 — Partially SUCCESSTUL......ooitiiiieiieie ettt ettt et et et e e st e ensessaessaenseenseensesnnes 121
17.2.3 202 — ACCEPLEA .ottt ettt ettt et et et et e et e e st e st e e s e e s e enseenseeneeeRe e st e st enseenbeenaeesaensaenseenseenneennas 121
17.3 4xX— CLIENT ERROR 122
17.3.1 400 — Ba REQUEST ..cuviiiiiiieiieeiieeiee ettt eieeette et e st eeteesteeesteessbeeesseesssaeasseesnseessseesnsasasseesssaessseesnseensseesssesnssens 122
17.3.2 401 — UNAULNOTIZE. ...ttt ettt et st be et e bt et e s e e st e e b e e sbe e b e enbeeneeeaees 122
17.3.3 402 — Bad ParamiElerooueiitieiieiieieee ettt ettt et et ettt sh e s h et e bt et ea e e a e bt e b e e b e et e enteeaeas 122
17.3.4 403 — FOIDIAQEN ...ttt sttt ettt et et et e b e e bt eb e e meen e e e e beabeebeebeeneeneeneensenaesseanes 122
17.3.5 404 - NOEFOUNM ..ottt ettt ettt ettt et e e bt e et eb e e st ene e e et e abeeseebeeneeneensensenseeeeenes 122
17.3.6 405 — Service NOt SUPPOTLEAeeecviiiiieeitieeieetteeieeetee et e et et e et e steeesbeessbeessseessbaeasseesssaessseesnseessseessseesssens 122
e A N (I B 1T 1o (< (o B0 B 11§ 0 USSR 122
17.3.8 415 — UnSupported Media TYPE.....ccceerueeriirieeieriest et et eteette st et e steetestestessee s st eseenseenseessesssesseeseensesnsesnnas 122
17.3.9 420 — Invalid Transaction-IDcceeciiiiiriiiiieriet ettt ettt et ete et e enseensessaesseeseenseensesnnas 122
17.3.10 422 — User-ID and Client-ID Does NOt MAtChc.cecuieiiiierieiieieeieee et 122
17.3.11 423 — Invalid INVItAtion-TDcccieiiiiiiiie ettt ettt ettt st e st et enteenbeenaessaessaeseenseenseennes 122
17.3.12 424 — InValid SEATCH-IDccuiiiiieiieieee ettt ettt e st ettt e st e e naeesaessaeseeneenneennes 123
17.3.13 425 — Invalid Search-INAEXcooiiiiiiiiiie ettt ettt b e b e 123
17.3.14 426 — INVAlid MESSAZE-TDcociiiiiieeiieeieeeite ettt et et e st e e st esbe e sttt e ssbeessbeessbeessseesssaensseessseensseesssenassens 123

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 9 (129)

17.3.15 431 — Unauthorized Group MemDbETrSRIP.......c.ccccuiiiiieiiieiiiesieeeiee ettt sve et sreesreesaeessbeesbeessseessseensseas 123
17.4 5XX—SERVER ERROR 123
17.4.1 500 — INternal SEIVET EITOTcc.iiiuiiiiiiiiiit ittt ettt ettt e sttt et ea e e st e st e sbeebeebeeneesnees 123
17.42 501 — NOt IMPIEMENLEAooovveiieiieiieie ettt ettt et et et et esesseesetesseesseesseenseenseessesssessaenseensennsesnnes 123
17.4.3 503 — Service UNavailableccccoiiriiiiiriiiiiieeceee sttt ettt ettt 123
1744 504 — INVALIA TIMEOUL. ...cuiitiitiitiiieeitetetert sttt sttt ettt ettt b e sb e bttt e st et b bt e bt ebeeb b et ebenbesbenbes 123
17.4.5 505 — Version NOt SUPPOTEA.cc.eeriieiiiiieiie ettt ettt ettt e te et e st esee s e e st eseenseenseessessaesseeseensesnsesnnes 123
17.4.6 500 — SErvICe NOt AGIEEAeeitieiieiieie ettt ete ettt e e st e st e et e e st essessaesseessee st enseenseanseessesssessaenseensennsennnes 123
17.4.7 507 —Message QUEUE 1S FULL......cciiiiiiiiiieieeieee ettt ettt ettt e e essaessaeseeseensesnnas 123
17.4.8 516 —Domain NOt SUPPOTIEAeecviiiiieeitieiiiieeiieeieeeteeetteetee st e eteesbeestee s teessseesnsaeasseesssaessseesseessseesssesnssens 123
17.4.9 521 — Unresponded PreSence REGUESEccvieiiiiiiiieeiie ettt ettt e sve e st e e sebeesbeesnseesssaesnseensseas 124
17.4.10 522 — Unresponded GIroup REQUESEceeviiiiiiieiieiiieeiie ettt erite et e eite et e et esteeeteesstaeenseesssaeesseesnsaesnseesns 124
17.4.11 53T — UNKNOWI USET ...ttt ettt ettt ee e b e b e b e et et e e st e satesbeenaeenbeenteenteeneenneans 124
17.4.12 532 —Recipient Blocked the SENdeTccviiiiiieiiiiiicie ettt et e st e e e s teeeaeesraeenseeens 124
17.4.13 533 — Message Recipient NOt LOZEEd Icoiueiriiiiiiiiiiiiieiceeee ettt 124
17.4.14 534 — Message Recipient UnauthOrized...........ccuveiieieiieiieiiee et 124
17.4.15 535 — Search TIMEA OULc.eeuiiuiiiiiinieieieeeecet ettt sttt ettt be b bt ettt enaesbenaea 124
17.4.16 536 — TOO MANY NILS. ..eiitiiiieiieii ettt ettt et e st e st e s tee st enseenbeesseesaenseenseenseensesnsesneenseenseenes 124
17.4.17 537 — T00 broad SEArCH CTILETIA.eouirtiriiriirieeiieitetet sttt ettt ettt et ettt besbeebe et eas et entenbenaens 124
17.5 6XX— SESSION 124
17.5.1 600 — SESSION EXPITEA.....ccuiieiieitieiieiieie ettt ettt et e e et e s eesate s st e st enseenseenseensesssessaenseensennsesnnes 124
17.52 601 = FOTCEA LOZOUL......eiiuiitietieteete ettt ettt ettt b e bt ettt e s e sate s bt e s bt e bt eateeabeeaeesbeesbeenbeenbeeneesnees 124
17.53 604 —Invalid Session / Not LOZEEd IN.....c.coiiiiiiiiiiieiee ettt e 124
17.54 606 —INValid SEIVICE-IDccuiiitiiiiiiiiie ettt ettt sttt ettt et s b e bt e b e et e enteenees 124
17.5.5 607 —Redirection RETUSEA......cc.eoiuiiiiiiiiiiiee ettt ettt b et et 125
1756 608 —INVAlId PASSWOTcoouiiitiiiiiiiiie ettt ettt sttt ettt e st e bt e s bt e sbeebe e b e eneesaees 125
17.5.7 609 — Connection EXPITE........ceeiieiiiiiiiiiiieeieeiest ettt ettt et s este s e et eteenseenseessessaesseeseenseensesnnas 125
17.5.8 610 — Server Search Limit iS EXCEEACAeeruiirieiiieiieiieieees ettt 125
17.5.9 620 — INVAlid SETVET SESSION...c..eiuiiuiiiirtintirtieteeiteit ettt sttt ettt ettt be bbbt eat et e st e b st e bt bt st e e ebenbesteenes 125
17.6 7XX—PRESENCE AND CONTACT LIST 125
17.6.1 700 — Contact List DOES NOt EXISt......ccuieeuiiiiiieriesiieie ettt ete e ee e e et esteesseensessaesseeseenseensesnnas 125
17.6.2 701 — Contact List AIr€ady EXISESccciioiiiiiiierierieit ettt ettt ettt enbeenaessaesseeseeseensesnnas 125
17.6.3 702 — Invalid or Unsupported USEr PrOPEIties.......c.ceecviiiriieeiieiiieeiiesieeeieesieeereesreeesseesreesseesseessseessseenssens 125
17.6.4 750 — Invalid or Unsupported Presence ALIIDULEScccveeriiriiieeiiieiieeeieeceeeiee s e ereesveesreesreeseseesnveennnees 125
17.6.5 751 —Invalid or Unsupported Presence ValUe..........cccviiciiieiiiiiiieeiie ettt s 125
17.6.6 752 — Invalid or Unsupported Contact LiSt PrOPEItYcccveecuiiiiiieeiieiiieeiie ettt s 125
17.6.7 760 — Automatic Subscription / Unsubscription is N0t SUPPOTLE........ceeecvierrreeriiieiiiieeiiesieeeieeeieesieeereenenees 125
17.7 8xX- GROUPS 126
17.7.1 800 — Group DOES NOt EXISt...c.eeiieriieiiiiiiiieeiesiesit et eteeteette st esteeteetessaesseesseesseesseenseenseessesssessaesseensesnsesnnes 126
17.7.2 801 — Group AlrCadY EXISES.....ceeiieriiiiiiiiieieeiiestestteie et et e ette st e teeteessesseesseesseesseenseenseenseessesssessaenseensesnsesnnas 126
17.7.3 802 — GIOUP 1S OPCI..ieiieiiiietietieieeteeteeteestesstes et esteesseeseesseesseeseesseansesssesssesseeseenssanseanseessesssessaeseensennsesnnes 126
17.7.4 803 — GroUp 1S CLOSEA. .. .ecuiieiieiieiieieee ettt ettt e et e st e e e te e besasesseessee st enseenseenseessesssessaenseenseensesnnas 126
17.7.5 804 — GroUP 1S PUDLICvieuiiiieiieiieieee ettt ettt et et et e st e st e s st e st enseenseenseensessaessaenseensennsesnnas 126
17.7.6 805 — GIOUP PIIVALEeeitiieiieiiieeiie ettt ettt et e et e et e et e e s beeeebeesebeessbeesaseesssaesnsaeasseesssaeasseesnseensseesnseenssens 126
17.7.7 806 — Invalid / Unsupported Group PrOPETTIESc.ceecuiiiiiieeiiieiiieeiiesieeeteesieeeteesreeeteesreessreesseessseesnseenssens 126
17.7.8 807 — Group 18 Already JOINEAc..eeiiuiieiiiiiiieeie ettt ettt e et e s e e st e e ssbeeesbeesnbaeenseessseessseesssaenssens 126
17.7.9 808 — Group 18 NOt JOINEAeeiviieiiiiiieeitieeieeeite et eteeeiee et e s teeeteesteeesbee s teessseesssaeasseessseessseesnseensseessseenssens 126
17.7.10 809 — REJECLEA. ... veeeuiieiiieeiiecieeeite ettt e et e ettt e et e e e tbeesebeestbeessbeeasbeessbeesseesssaeasseessseesseensseesseensneensseansseenses 126
17.7.11 810 — NOt @ GTOUP MEIMDETeeeiieiiieiiieeieeeite et e et e et e sttt e steeetteessteessbeessseessseessseessseessseeasseessseensseasssesnses 126
17.7.12 811 — Screen Name Already 10 USEcceevuieriieiieieeieeiesieeie ettt ettt e s e eseensesnnesneesneenseenes 126
17.7.13 812 — Private Messaging is Disabled fOr GIOUPc.ecveiieriieriiiie et 127
17.7.14 813 — Private Messaging is Disabled fOr USETccueiieiieriieiiiiecie et 127
17.7.15 814 — The Maximum Number of Groups Has Been Reached for the User...........cccoeeevieniiniiciicieiee, 127
17.7.16 815 — The Maximum Number of Groups Has Been Reached for the Server..........ccoccovieviiiiiiiicinieen, 127
17.7.17 816 — Insufficient Group PriVIIEEZESc.ccieriieriieieeie ettt ettt ettt se s e aeseeesneeseenes 127
17.7.18 817 — The Maximum Number of Joined Users Has Been Reached ..o 127
17.7.19 821 — HiStOry 1S NOt SUPPOTLEA.....eeiiiieiieiiieeiiecieeeit ettt sre et este e bt e saeestbeessaeessseessaeensseensneesseensseenses 127

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 10 (129)

17.7.20 822 - Cannot have searchable group without Name O tOPIC.eevereerieriieiiieiieieeiere e 127

17.8 9XX-— GENERAL ERRORS 127
17.8.1 900 — IMUILIPIE ©ITOTS ..eeiuvieeiieiiieeiieeiteeeiteeesteeeteeeteeeteesbeeebeessbeeesseessseessseesnseessseesnsesasseesssaessseessseensseensseenssens 127
17.8.2 901 — General AdAress EITOToooooviiiiieie et e e e e e e e e e et e e e eennaeeeenneeean 127

18. STATIC CONFORMANCE REQUIREMENTS 128
APPENDIX A. CHANGE HISTORY (INFORMATIVE) 129
A.1 APPROVED VERSION HISTORY 129

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 11 (129)

1. Scope

The Wireless Village Instant Messaging and Presence Service (IMPS) includes four primary features:
* Presence
* Instant Messaging
e Groups
* Shared Content

Presence is the key enabling technology for IMPS. It includes client device availability (my phone is on/off, in a call), user
status (available, unavailable, in a meeting), location, client device capabilities (voice, text, GPRS, multimedia) and
searchable personal statuses such as mood (happy, angry) and hobbies (football, fishing, computing, dancing). Since presence
information is personal, it is only made available according to the user's wishes - access control features put the control of the
user presence information in the users' hands.

Instant Messaging (IM) is a familiar concept in both the mobile and desktop worlds. Desktop IM clients, two-way SMS and
two-way paging are all forms of Instant Messaging. Wireless Village IM will enable interoperable mobile IM in concert with
other innovative features to provide an enhanced user experience.

Groups or chat are a fun and familiar concept on the Internet. Both operators and end-users are able to create and manage
groups. Users can invite their friends and family to chat in group discussions. Operators can build common interest groups
where end-users can meet each other online.

Shared Content allows users and operators to setup their own storage area where they can post pictures, music and other
multimedia content while enabling the sharing with other individuals and groups in an IM or chat session.

These features, taken in part or as a whole, provide the basis for innovative new services that build upon a common
interoperable framework.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 12 (129)

2. References

2.1 Normative References

[IOPPROC]

[CSP SCR]

[FIPS 180-1]

[E.164]

[RFC1321]

[RFC2045]

[RFC2046]

[RFC2119]

[RFC2234]

[RFC822]

[SSP SCR]

[XML]

“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-
Process-V1 1, http://www.openmobilealliance.org/

"WV-048 Client-Server Protocol Static Conformance Requirement Version 1.2". Open Mobile
Alliance. http://www.openmobilealliance.org/

“Secure Hash Standard”, April 1995 URL:http://csrc.nist.gov/publications/fips/fips180-
1/fip180-1.pdf

ITU-T Recommendation E.164 (05/97) The international Public Telecommunication
Numbering Plan.
URL:http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-E.164-
199705-1

“The MD5 Message-Digest Algorithm”, April 1992.
URL:http://www.ietf.org/rfc/rfc1321.txt?number=1321

Multipurpose Internet Mail Extensions (MIME) Part one: Format of Internet Message Bodies.
Section 6.8 “Base64 Content-Transfer-Encoding”, November 1996.
URL:http://www.ietf.org/rfc/rfc2045.txt?number=2045

Borenstein N., and N. Freed, "MIME (Multipurpose Internet Mail Extensions) Part Two: Media
Types", November 1996. URL:http://www.ietf.org/rfc/rfc2046.txt?number=2046

“Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
URL:http://www.ietf.org/rfc/rfc2119.txt

“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell.
November 1997. URL:http://www.ietf.org/rfc/rfc2234.txt

“Standard for the Format of ARPA Internet Text Messages”.August 1982.
URL:http://www.ietf.org/rfc/rfc0822.txt?number=822

"WV-055 SSP — Server-Server Protocol Static Conformance Requirement Version 1.2". Open
Mobile Alliance. http://www.openmobilealliance.org/

“Extensible Markup Language 1.0 (Second Edition)”, W3C recommendation, October 2000.
URL:http://www.w3.0org/TR/2000/REC-xml-20001006.pdf

2.2 Informative References

[Arch]

[FeaFun]

[CSP]

[CSP DTD]

[CSP Trans]

[CSP DataType]

[CSP SMS]

"WV-040 System Architecture Model Version 1.2". Open Mobile Alliance.
http://www.openmobilealliance.org/

"WV-041 Features and Functions Version 1.2". Open Mobile Alliance.
http.//www.openmobilealliance.org/

"WV-042 Client-Server Protocol Session and Transactions Version 1.2". Open Mobile
Alliance. http://www.openmobilealliance.org/

"WV-043 Client-Server Protocol DTD and Examples Version 1.2". Open Mobile Alliance.
http.//www.openmobilealliance.org/

"WYV-044 Client-Server Protocol Transport Bindings Version 1.2". Open Mobile Alliance.
hitp://'www.openmobilealliance.org/

"WV-045 Client-Server Protocol Data Types Version 1.2". Open Mobile Alliance.
http.//www.openmobilealliance.org/

"WV-046 Client-Server Protocol SMS Binding Version 1.2". Open Mobile Alliance.
hitp://'www.openmobilealliance.org/

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.w3.org/TR/2000/REC-xml-20001006.pdf
http://www.openmobilealliance.org/
http://www.ietf.org/rfc/rfc0822.txt?number=822
http://www.ietf.org/rfc/rfc2234.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2046.txt?number=2046
http://www.ietf.org/rfc/rfc2045.txt?number=2045
http://www.ietf.org/rfc/rfc1321.txt?number=1321
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-E.164-199705-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-E.164-199705-I
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.pdf
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.pdf
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 13 (129)

[CSP WBXML]

[CSP SCR]
[PA]

[PA DTD]
[CLP]

[SSP]

[SSP Syntax]
[SSP Trans]
[SSP SCR]

[WAPARCH]

"WV-047 Client-Server Protocol Binary Definition and Examples Version 1.2". Open Mobile
Alliance.
http://www.openmobilealliance.org/

"WV-048 Client-Server Protocol Static Conformance Requirement Version 1.2". Open Mobile
Alliance. http.//www.openmobilealliance.org/

"WV-049 Presence Attributes Version 1.2". Open Mobile Alliance.
http://www.openmobilealliance.org/

"WV-050 Presence Attribute DTD and Examples Version 1.2". Open Mobile Alliance.
http.//www.openmobilealliance.org/

"WV-051 Command Line Protocol Version 1.2". Open Mobile Alliance.
http://www.openmobilealliance.org/

"WV-052 SSP - Server-Server Protocol Semantics Document Version 1.2". Open Mobile
Alliance. http.//www.openmobilealliance.org/

"WV-053 Server-Server Protocol XML Syntax Document Version 1.2". Open Mobile Alliance.
http://www.openmobilealliance.org/

"WV-054 SSP - Transport Binding Version 1.2". Open Mobile Alliance.
http.//www.openmobilealliance.org/

"WV-055 SSP — Server-Server Protocol Static Conformance Requirement Version 1.2". Open
Mobile Alliance. http://www.openmobilealliance.org/

“WAP Architecture, Version 12-July-2001”. Open Mobile Alliance™. WAP-210-WAPArch.
http.//www.openmobilealliance.org/

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 14 (129)

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD?”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be
informative.

3.2 Definitions

The following definitions are for terms specific to the Wireless Village and general terms that may have some special context
within the documentation. These definitions are provided to enhance the use of this documentation.

Home Domain refers to the home IMPS system, which the user subscribes to, and in which the user is authenticated and
authorized to use IMPS services

Primary Service Element refers to a Service Element of an IMPS service for a client. A PSE may be in the Home Domain of the
client, or in the other domain.

Complementary Service refers to a situation in which the Primary Service Element (PSE) is NOT in the Home Domain. Instead,
the PSE is in another domain.

Provider Server the WV server, which provides the services for the Requestor Server in the frame of a session after the
successful service agreement is negotiated.

Requestor Server the WV server, which requests the services from the Provider Server in the frame of a session after the
successful service agreement is negotiated.

Service Request it is initiated from the Requestor Server to the Provider Server

Service Notification it is initiated from the Provider Server to the Requestor Server

The terms MAY, SHOULD, MUST are consistent with the definitions in RFC 2119.

3.3 Abbreviations

ARPA Advanced Research Projects Agency

An agency of the United States Department of Defense, ARPA underwrote the development of the Internet
beginning in 1969. A precursor to IETF.

DTD Document Type Definition

HTTP Hypertext Transfer Protocol

TANA Internet Assigned Number Authority
IETF Internet Engineering Task Force

A society of engineers and developers dedicated to designing and advancing standards for internet use.
WAP Wireless Application Protocol

A specification for a set of communication protocols to standardize the way that wireless devices, such as cellular
telephones and radio transceivers, can be used for Internet access

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 15 (129)

4. Introduction

The Wireless Village (WV) Server-Server Protocol (SSP) provides the communication and interaction means between
different IMPS service domains. SSP allows the WV clients to subscribe to the IMPS services provided by different service
providers that are distributed across the network. SSP allows the WV clients to communicate with existing proprietary Instant
Messaging networks through the Proprietary Gateway. The interoperability between different devices and service providers is
achieved in a way that user #1 that subscribes to Wireless Village services at Service Provider A can communicate with user
#2 that is a client of Service Provider B. The goal of SSP is to support the distributed interoperable complementary IMPS
services across service provider domains.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 16 (129)

5. Server-Server Protocol
5.1 SSP Interoperability Model

The term “Home Domain” is the domain the client subscribes to, and is authenticated and authorized to use the IMPS
services.

The term “Primary Service Element” (PSE) is the primary SE of an IMPS service for a client. PSE may be in the Home
Domain of the client, or be in a remote domain.

Wireless Village Server - Domain A
IM Service Group / Chat
Client 1 I CSPor CLP-—{ Service Access Point
sSSP
Client 2 ——CSPor CLP-—{ Service Access Point
IM Service Shared Content
Presence Service Group / Chat
Wireless Village Server - Domain B

Figure 1. The SSP Minimum Interoperability Model

SSP supports server interoperability at different levels. At the lowest level, two users located at two different home domains
are able to communicate with each other, as shown in Figure 1. At the highest level, SSP supports a complete set of IMPS
services that are assembled from complementary IMPS services across service provider domains, as shown in Figure 2. SSP
defines the rules for the PSE to take appropriate actions to achieve the interoperability and provide distributed IMPS services.

To allow the service providers to have the flexibility to choose the appropriate level of interoperability and set up different
service agreements between themselves, SSP mandates a minimum set of interoperable features and functions. To guarantee
interoperability it is required that two interacting servers provide the same subset of services.

In the example in Figure 1, client 1 is located in home domain A, and client 2 is located in home domain B. Domain A
implements IM and Group service elements, and domain B implements the full set of Wireless Village service elements. The
common subset of services is IM and Group, i.e. client 1 and client 2 are interacting across domains via the minimum set of
interoperable IM and Group features and functions in SSP.

The full set of interoperability features includes the Interoperability Management and the IMPS Service Relay. The
Interoperability Management includes a Security Model, Transaction Management, Session Management, Service
Management and User Profile Management. The IMPS Service Relay includes Common IMPS Features, Contact List
Features, Presence Features, Instant Messaging Features, Group Features and Shared Content Features.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 17 (129)

Wireless Village Server- DomainA

Presence Service Group / Chat

Cient 1 —CSPorCLP——' Service Access Point |

Cient 2 —CSPorCLP——' Service Access Point |

IMService Shared Content

WirelessVillage Server- DomainB

Figure 2. The SSP Full Interoperability Model

In the example in Figure 2, client 1 is located in home domain A, and Client 2 is located in home domain B. Domain A
implements the presence and group service elements and domain B the IM and shared content service elements. The Wireless
Village interoperability model allows client 1 and 2 to utilize the complete set of features and interact with each other via the
SSP.

In SSP Interoperability, the Home Domains must have direct SSP connection to interoperate with each other. However, SSP
supports the routing of “Service Relay” between the Home Domain and the PSE. The route from Home Domain B to its PSE
is shown in Figure 3, where the PSE domain that provides the actual service element, e.g. IM service, is at the end of the
route. All intermediate domains are relaying the service request to the next hop. The intermediate nodes act as the "logical"
Service Provider role for each downstream domain, and act as the “logical” Service Requestor role for each upstream
domain.

Provider Requestor Provider Requestor Provider
Home L H(1) H(n)
I Domain B WVS WVS

Home
Client A

[Upstream |

Figure 3. The SSP Service Relay

At each Wireless Village server, the Service Access Point (SAP) should maintain a Service Table that keeps track of the
service agreements to appropriately relay the SSP service request on a per-service basis and forward the SSP service result on
a per-domain basis. Being the “logical” Service Provider, the SAP should maintain a Session Record for each Service
Requestor. Being the “logical” Service Requestor, the SAP should maintain a Transaction Record for each Service Provider.
The SAP should maintain a Transaction Table to map each requested transaction from its Service Requestor to the initiated
transaction to its Service Provider. The Transaction Table should be the uniquely one-one match. Therefore, the Service
Relay flow and Result Forward flow at each SAP is clearly and uniquely identified by the transaction flows.

The SAP at a Home Domain shall appropriately map the CSP/CLP service request from the client to the SSP service request,
and/or map the SSP service result to CSP/CLP service result to the client.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 18 (129)

5.2 SSP Interoperability Rules

In SSP Interoperability, the Home Domains must have direct SSP connections to interoperate with each other. However, SSP
supports the routing of “Service Relay” between the Home Domain and the PSE. The basic IOP rules are:

Rule 1: At the Home Domain, each user-initiated service request and the relayed service request from another Home Domain
shall be routed / relayed from this Home Domain to its PSE for the first and primary processing. PSE is the primary and
default service element to provide the user with the service.

Rule 2: If PSE needs more information from another SE in another Home Domain, but the service agreement between them
does not support such information exchange, the PSE shall relay the service request to that Home Domain for further
processing. Before a service request is relayed to a SE in another Home Domain, all information elements of local scope must
be replaced with those of global scope. For example, a local User-ID is replaced with a global User-ID. Moreover, if the
information element is a reference to a local object, it must be replaced by the actual information, e.g. a reference to a
Contact-List must be replaced by a list of global User-ID's.

Rule 3: At the PSE, each PSE-initiated transaction shall be routed / relayed from the PSE back to its Home Domain, from
which the PSE-initiated transaction is triggered (by the user-initiated or relayed service request). The PSE-initiated
transaction shall be next relayed from the Home Domain to the destination Home Domain via the direct SSP connection
between them (e.g. Figure 7 in section 5.4.4). If two Home Domains provide each other with the complementary PSE, the
direct routing / relay is allowed from the complementary PSE to the destination domain (e.g. Figure 6 in section 5.4.3).

An intermediate domain shall route / relay the service request to the PSE and from the PSE based on its service agreement. A
routing table is allowed in the intermediate domain. The routing table shall be offline configured based on the service
agreement. If the routing table is used in PSE, it shall override the routing Rule 3 (e.g. Figure 8 in section 5.4.6).

5.3 SSP Service Agreement and Routing

The exchange of messages between Wireless Village domains is normally performed in one hop over an established direct
SSP connection. However, Wireless Village does support routing of messages between the Home Domain and the PSE. The
SSP routing between domains is based on the SSP IOP rules and the business agreements between the domains. The business
agreements must be established among all domains that are involved in the handling of SSP service relays between two end
points.

After the business agreements are made between the domains, each domain shall be able to route and relay the services
between the domains along the path. The routing table is created based on the business and service agreement.

In conclusion, the SSP IOP routing is defined by offline business agreements and service agreements that contains routing
agreements and configuration. Each Wireless Village Server (WVS) holds a static list of direct connected neighbors. The list
specifies the agreed domains that may be forwarded to one of the direct connected WVS’s.

5.4 SSP Interoperability Case Study

There are different situations in SSP interoperability. This section illustrates different interoperability models and the
transaction flows based on the IOP rules described in 5.2.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 19 (129)

541 Case 1 — Two Users are Located in different Home Domains. Each
Home Domain has its own SE. Two Home Domains are Connected

Home Domain A

CSP: SendMessage

User 1
SAP IMSE
SSP: SendMessage +
Home Domain B
User 2

CSP: NewMessage SAP IMSE

Figure 4. The SSP IOP Case One

In the example in Figure 4, client 1 is located in home domain A, and client 2 is located in home domain B. A’s IM PSE is
located in Domain A, and B’s PSE is located in Domain B. This is the minimal interoperability case. The transaction flow of
sending a message from client 1 to client 2 is:

1.Cl -> DA: CSP-SendMessage
2. DA -> DB: SSP-SendMessage

3.DB -> C2, SSP-NewMessage (after checking block list etc.)

542 Case 2 — Two Users are Located in the same Home Domain

CSP: SendMessage Home SSP: SendMessage PSE Domain
User 1 » Domain A : . [> B
i Intermediate !
i Domains | IMSE
! 1
SAP ! |
User2 |« < e - SAP
CSP: NewMessage SSP: NewMessage

Figure 5. The SSP IOP Case Two
In the example in Figure 5, both client 1 and 2 are located in home domain A. The IM PSE is located in Domain B. Domain
A and B are connected via some intermediate domains. The transaction flow of sending a message from client 1 to client2 is:
1.Cl -> DA: CSP-SendMessage
2. DA -> DB: SSP-SendMessage (through intermediate domains via routing)
3.DB -> DA, SSP-NewMessage (after checking block list etc.)
4

. DA -> C2, CSP-NewMessage

If Domain A and Domain B are directly connected, there will be one SSP-SendMessage from A to B, and one SSP-
NewMessage from B to A.

If Domain A and Domain B are connected through several intermediate domains, there will be several SSP-SendMessages
from A to B, one for each hop. Each intermediate domain will relay the SSP-SendMessage to the next hop. There will also be
several SSP-NewMessages from B to A, one for each hop. Each intermediate domain will forward the SSP-NewMessage to
the next hop.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 20 (129)

54.3 Case 3 —-Domain A and C have Direct SSP Connection while Domain C
Provides A with Complementary PSE

CSP: SendMessage | Home Domain A | ssp: SendMessage

User 1 P ‘
SAP ' PSE Domain B

Home Domain C| SSP: SendMessage
—» IMSE

User2 < SAP
CSP: NewMessage SSP: NewMessage SAP

Figure 6. The SSP IOP Case Three

In the example in Figure 6, Domain A and C have a direct SSP connection, and Domain C provides A with complementary
IM PSE in Domain B. The transaction flow of sending a message from client 1 to client 2 is:
1.Cl1 -> DA: CSP-SendMessage
. DA -> DC: SSP-SendMessage

2
3.DC -> DB: SSP-SendMessage (through intermediate domains via routing)
4.DB -> DC, SSP-NewMessage (after checking block list etc.)

5

.DC -> C2, CSP-NewMessage

5.4.4 Case 4 — Two Users are Located in different Home Domains. Each
Home Domain has its complementary PSE. Two Home Domains are

Connected
. SSP: SendMessage -
CSP: SendMessage Home Domain A < > PSE Domain B
User 1 > SAP SSP: SendMessage IMSE SAP
P T .
| i Intermediate :
SSP: SendM i 1
o essag% + Domains |
Home DomainC| «_______________ ! PSE Domain D
User2 < SSP: SendMessage
CSP: NewMessage SAP 4 IMSE SAP
SSP: NewMessage

Figure 7. The SSP I0OP Case Four

In the example in Figure 7, client 1 is located in home domain A, and client 2 is located in home domain C. A’s IM PSE is
located in Domain B, and C’s PSE is located in Domain D. Home domain A and home domain C are connected via some
intermediate domains. The transaction flow of sending a message from client 1 to client 2 is:

1. Cl ->DA: CSP-SendMessage

DA -> DB: SSP-SendMessage (through intermediate domains via routing)
DB -> DA: SSP-SendMessage (through intermediate domains via routing)
DA -> DC: SSP-SendMessage

DC -> DD: SSP-SendMessage (through intermediate domains via routing)
DD -> DC, SSP-NewMessage (after checking block list etc.)

DC > C2, CSP-NewMessage

NS kWD

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 21 (129)

545 Special Case Processing

The special cases include the situations in which offline agreement overrides the IOP Rule 3. The following example
illustrates the processing for this type of special case.

546 Two Users are Located in different Home Domains. Both Home
Domains Share the same PSE

CSP: SendMessage | Home Domain A | ssp: SendMessage PSE Domain B
User 1 T T >
SAP i i
' Intermediate IMSE
' Domains !
1 1
Home Domain C E | SAP
1
User2 |« < : '
CSP: NewMessage SAP SSP: NewMessage

Figure 8. The SSP IOP Special Case

In the example in Figure 8, client 1 is located in home domain A, client 2 is located in home domain C. Both Domain A and
Domain C share the IM PSE located in Domain B. Domain A and B are connected via some intermediate domains. Domain
C and B are connected via some intermediate domains. The transaction flow of sending a message from client 1 to client2 is:

6.Cl -> DA: CSP-SendMessage
7.DA -> DB: SSP-SendMessage (through intermediate domains via routing)
8. DB -> DC, SSP-NewMessage (after checking block list etc.)
9.DC -> C2, CSP-NewMessage
Note that the transaction flow is based on the offline configuration in PSE Domain B, which allows the direct relay from A to

B to C without the direct SSP connection between Home Domain A and C based on their off-line routing agreement. IOP
Rule 3 does not apply to this case.

If Domain A and Domain B are directly connected, there will be one SSP-SendMessage from A to B. If Domain A and
Domain B are connected through several intermediate domains, there will be several SSP-SendMessages from A to B, one
for each hop. Each intermediate domain will relay the SSP-SendMessage to the next hop.

If Domain C and Domain B are directly connected, there will be one SSP-NewMessage from B to C. If Domain C and
Domain B are connected through several intermediate domains, there will be several SSP-NewMessages from B to C, one for
each hop. Each intermediate domain will forward the SSP-NewMessage to the next hop.

5.5 SSP Protocol Stack

The SSP protocol stack is divided into three layers as follows.

SSP Semantics Layer — Features and Functions

SSP Syntax Layer — XML DTD

SSP Transport Layer — HTTP

Figure 9. The SSP Protocol Stack

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 22 (129)

SSP Semantics Layer defines the complete set of features and functions that SSP intends to address in the full interoperability
model among the WV domains. The nature of the features and functions, i.e. mandatory or optional or conditional, is also
defined in the SSP Semantics Layer. The details of the features and functions are described in the transactions, primitives and
information elements in the SSP Semantics Layer.

SSP Syntax Layer defines the “communication language” for the WV SAP’s to understand the information between each
other and accomplish the interoperability of the features and functions defined in SSP Semantics Layer. SSP Syntax Layer is
the set of XML DTD specification.

SSP Transport Layer defines the “communication method” that conveys the “communication language” between the WV
SAP’s to achieve the interoperability. SSP Transport Layer v1.0 is HTTP.

This document describes the SSP Semantics Layer.

The term “Server” in this document represents the logical server cluster in one service provider domain. The term “Server” is
interpreted as the single access point of the domain, which may be physically a Local Director, or a Proxy, or a Routing
Proxy, or anything else that represents the domain. The term “Server” is not interpreted as any physical server entity of the
deployment within the domain.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 23 (129)

6. Protocol Introduction

SSP is based on the architecture model described in the “System Architecture Model” document [Arch] and focuses on the
communication and interaction among the WV domains. The semantics of SSP is consistent with the functional description
of the Service Access Point (SAP) in the architecture model. The semantics of SSP implements the server interoperability
described in the “Features and Functions” document [FeaFun]. The semantics of SSP supports the semantics of Client to
Server Protocol (CSP) [CSP] in a distributed environment to achieve full interoperability.

6.1 Basics

6.1.1 Session

The server interoperability is accomplished in the frame of two SSP sessions. An SSP session is the period during which the
servers conduct interactions and interoperations for the Service Provider to provide the Service Requestor with the negotiated
IMPS services.

Each Provider Server maintains one session for each Requestor Server. There are two sessions between two domains. Each
server maintains one session to provide the other with its own negotiated IMPS services.

6.1.2 Transaction

The SSP semantics are accomplished by “transactions”. An SSP transaction is the sequence of interactions to complete a
specific SSP feature or function. The SSP transactions include one-way transactions, two-way transactions, and multi-way
transactions. A one-way transaction consists of a service request. A two-way transaction consists of a service request and a
service response. A multi-way transaction consists of a sequence of service requests and responses.

6.1.3 Message
Both service requests and service responses are called SSP “messages”. An SSP message is the syntax unit in one interaction.

An SSP message must contain some meta-information including the protocol information (e.g. version), the session
information (e.g. Session-ID), the transaction information (e.g. Transaction-ID) and the attribute information (e.g. one-way /
two-way, request / response). The “response” message in a two-way transaction must contain the same Transaction-ID as the
corresponding “request” message. All transactions during one session must contain the same Session-ID.

6.1.4 Primitive

Each SSP message includes one or more SSP “primitives” with appropriate parameters. An SSP primitive is the semantics
unit in one message.

Each service request message contains one functional primitive. Each service response message includes a status primitive as
well as the optional, one or more SSP primitive(s).

6.2 Session Pair vs. Connections

There are two sessions between two domains. Each domain maintains one session to provide the other with its own
negotiated IMPS services. The two sessions are established through session establishment.

There are at least two physical connections, namely the connection pair, to carry the service traffic of the session pair. The
servers may establish more than one connection pair to support the same session pair.

The physical connection carries the service requests from the Requestor server to the Provider Server in one direction, and /
or the notifications from the Provider Server to the Requestor Server in the other direction.

Connections are reusable. Each session may use some or all of the connections to transport its transactions. Each connection
may be used by only one session, or reused by both sessions.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 24 (129)

An SSP transaction (request and response) must be completed using the same connection pair.

Please refer to the SSP Transport Binding Document [SSP Trans] about how the connection (pair) is bound to the underlying
transport.

6.3 Addressing

SSP addressing schema uses the uniform Wireless Village addressing model in a unique Wireless Village address space. SSP
addressing schema is consistent with that in CSP.

The definition of SSP address is based on the URI [RFC2396]. The addressable entities are:
* User
* Contact List
e Group (public and private)
* Content (public and private)
* Message
e Service (SSP unique)

The other address spaces may be used to interoperate with other systems. The use of other address spaces is up to the
implementation and out of scope of Wireless Village.

6.3.1 General SSP Addressing Schema

The general SSP addressing schema is based on URI [RFC2396]. The “wv” schema in the URI indicates the Wireless Village
address space. The generic syntax is defined as follows:

WV-Address = Service-ID | Message-ID | Other-Address
Other-Address = [“wv:”] [User-ID] [“/” Resource] “@” Domain
Global-User-1ID = User-ID “@” Domain

Resource = Group-ID | Contact-List-ID | Content-ID
Domain = sub-domain * (“.” sub-domain)

where User-ID refers to the identification of the Wireless Village user inside the domain. Domain is a set of the Wireless
Village entities that have the same “Domain” part in their Wireless Village addresses. Domain identifies the point of the
Wireless Village server domain to which the IMPS service requests must be delivered if the requests refer to this domain.
Resource further identifies the public or private resource within the domain. The sub-domain is defined in [RFC822]. The
Service-ID is globally unique to identify a Server (either a WV server or a Proprietary Gateway), which is defined in section
6.3.7.

When the Global-User-ID is present without the Resource, the address refers to the user. In SSP, the user is always identified
in the global scope.

When the Global-User-ID is present with Resource, the address refers to the private resource of the user. When the User-ID
is not present, the Domain and the Resource must always be present, and then the address refers to a public resource within
the domain.

The domain must always be present in SSP addressing to globally identify the user or resources, and used for address
resolution of those network entities.

The schema part is optional. When it is not present, the default schema “wv:” is assumed.

The addresses are case insensitive.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 25 (129)

6.3.2 Address encoding

As per URI [RFC2396], certain reserved characters must be escaped if they occur within the User-ID, Resource, or Domain
portions of a Wireless Village address. This includes the characters ;”, “?”, “:”, “&”, “=", “+”, “$” and “,”. For example, a
valid Wireless Village address for the user “$mith” in the “server.com” domain is:

wv:%24mith@server.com

Certain characters are not permitted to occur in the User-ID portion of Wireless Village addresses (see 6.3.3 below). This
includes the characters “/”, “@”, “+”, “ “ and TAB. This restriction is independent of the encoding of a User-ID within a
Wireless Village address. For example, this Wireless Village address is not permissible:

wv:john%40aol.com@server.com

This address is not permissible because after URI-decoding, the User-ID portion contains a forbidden character (“@”). If a
server’s internal representation of a username permits the occurrence of forbidden characters, such characters must be
double-escaped when they occur in a Wireless Village address, such that they do not occur unescaped in the User-ID portion
after URI-decoding, or they must be escaped via some other scheme that does not employ forbidden characters.

6.3.3 User Addressing and Global-User-ID

SSP uses User-ID’s to uniquely identify a WV User. The User-ID refers to either the Internet-type address or to a mobile
number of the user. If it refers to the mobile number of the user, the user name always starts either with digit or with '+' sign.
User name referring to Internet-type address may not start with '+' sign or digit.

The syntax of the User-ID is defined as follows:

User-1ID = Mobile-Identity | Internet-Identity
Internet-Identity = *alpha

Mobile-Identity = (digit | "+") *digit

digit = "O"™ | "IM™ | m"2M™ M3M™ o |M™4M" o "sM™ o "e™ |"7M™ | "8"™ | "9"
alpha = Any non-control ASCII character (decimal 32 - 126,

inclusive) except specials

Specials — n/n | n@n | win | won | TAB

When the User-ID refers to the mobile number address, the User-ID preceded with a ‘“+’ sign refers to the international
numbering in The International Public Telecommunication Numbering Plan [E.164]. Without a ‘+’ sign, it refers to the
national numbering in the [E.164].

Examples of the User-ID’s are:

Local-User-1D: wv:Jon.Smith
wv:+358503655121
wv:0503655121

Global-User-ID: wv:Jon.Smith@imps.com
wv:+358503655121Q@imps.com
wv:0503655121@imps.com

SSP always uses Global-User-ID to identify the users.

The users may also be identified by screen names, nicknames and aliases. These identifiers explicitly and implicitly refer to
the User-ID.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 26 (129)

ScreenName — the combination of a name a user chooses in a group session, and the Group-ID itself. The user
may have different ScreenNames on different occasions as well as on different groups. The ScreenName is
always connected to a group.

NickName — A name that is used internally in a client to hide the UserID of contacts. When ContactList is stored
on the server, the NickName must have a space, but it is not possible to address a NickName.

Alias — The name a user suggest others to use as NickName. Part of the User Presence.

The definition of User-ID in SSP is consistent with that in CSP.

6.3.4 Contact List Addressing and Contact-List-I1D

SSP uses Contact-List-ID’s to uniquely identify any contact list of any user. The syntax of Contact-List-ID is defined as
follows:

Contact-List-ID = *alpha

Examples of the contact list address with Contact-List-ID are:
wv:john/colleagues@imps.com

wv:/managers@imps.com
SSP always identifies the contact list globally.

The definition of Contact-List-ID in SSP is consistent with that in CSP.

6.3.5 Group Addressing and Group-ID

SSP uses Group-ID’s to uniquely identify any group. The syntax of the Group-ID is defined as follows:
Group-ID = *alpha

Examples of the group address with Group-ID are:
wv:john/mygroup@imps.com

wv:/technical forum@imps.com
SSP always identifies the group globally.

The definition of Group-ID in SSP is consistent with that in CSP.

6.3.6 Content Addressing and Content-ID

SSP uses Content-ID’s to uniquely identify any content. The syntax of the Content-ID is defined as follows:
Content-ID = *alpha

Examples of the content address with the Content-ID are:
wv:john/WV presentation@imps.com

wv:/wvspec@imps.com
SSP always identifies the content globally.

The definition of Content-ID in SSP is consistent with that in CSP.

6.3.7 Client Addressing and Client-1D

The Client-ID uniquely identifies the WV client as an application as well as its addressing that allows the access to the WV
services. The client-ID is intended to allow:

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 27 (129)

* Multiple accesses from the same user

* Direct application-to-application communication

The Client-ID consists of

* Optional application identifier such as a URL identifying the
application and its addressing,

* Optional mobile device identity (such as international mobile number
[E.164]).

The definition of Client-ID in SSP is consistent with that in CSP.

6.3.8 Service Addressing and Service-ID

The Service-ID in SSP is equivalent in the semantic role to the User-ID in CSP. The Service-ID in SSP uniquely identifies a
Server. The syntax of Service-ID is defined as follows.

AN

Service-ID = “wv:”@ Domain

Domain is a set of the WV entities that have the same Domain part in their WV addresses. The Domain is associated with one
WYV server (the unique access point) to which the IMPS service requests must be delivered if the addressed network entities
refer to this Domain.

The Service-ID is used in the session establishment (refer to section 9.1.1, 9.2.2 and 9.3.1) and other SSP management
functions.

The Service-ID is used as part of the meta-information in the SSP transactions (refer to section 8.1).

An examples of the Service-ID is:

Service-ID: wv:@imps.com

6.3.9 Message and Message-ID

The Message-ID in SSP is globally unique to identify a message. The syntax of Message-ID is defined as follows:

Message-ID = Local-Message-ID “@” Domain
Where the “Local-Message-ID” uniquely identifies a message within the IMSE domain, and subject to the implementation.

An example of the Message-ID is:
12345678Q@1imps.com.

The definition of Message-ID in SSP is consistent with that in CSP.

6.4 Data Types

SSP defines four basic data types, namely “Char”, “Integer”, “String” and “Boolean”, and three structured date types namely
“Enum”, “DateTime” and “Structure”.

An information element is “String” type by default unless specified.

6.4.1 Char

A “Char” type element is a single character encoded in UTF-8.

6.4.2 Integer

An “Integer” type element is a 32-bit decimal number ranging in [0, 2°* - 1].

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 28 (129)

6.4.3 String

A “String” type element is a sequence of “Char” elements.

6.4.4 Boolean

A “Boolean” type element is either “True” or “False”.

6.4.5 Enum

An “Enum” type element is one of the pre-defined set of values.

6.4.6 DateTime

A “DateTime” type clement follows the ISO-8601 specification and is expressed in a “String” type element. The date and
time format shall be complete date and time using the basic format. There shall be no time-zone indication, but the time may
indicate if the time is Coordinated Universal Time (UTC) or local time. The examples are:

Local time: 20011019T125031
UTC: 20011019T095031%

6.4.7 Structure

A “Structure” type element is the combination of other types of elements as specified.

6.5 Infrastructure Elements

Infrastructure elements are required in the end-to-end solution of server interoperability. Infrastructure elements may not be
carried within information elements in SSP protocol. However, the implementation shall be able to support the infrastructure
elements to ensure the server interoperability.

6.5.1 Host-1D

The Host-ID is the primary (Master) host address of the SAP of the WV server or Proprietary Gateway. The Host-ID must be
used for establishing the session with this WV server or Proprietary Gateway.

The Host-ID is referenced in the form of DNS host name. The Host-ID may be stored inside the environment for DNS A RR
host address resolution, or may be retrieved from the Service-ID by the DNS SRV RR based address resolution.

The Host-ID cannot be changed during a session.

An example of Host-ID is:

hostl.imps.com

6.5.2 Redirect (Host) Name

When the WV server in a domain can be accessed through several SAP’s distributed in different physical hosts, this WV
server may provide a list of those hosts for the other WV server to share the load at the session establishment. This list is
called Redirect List and contains the redirect host DNS names. A Redirect (Host) Name in SSP uniquely identifies a physical
host in the WV Server or a Proprietary Gateway domain.

The Redirect (Host) Names may be configured statically based on offline agreement between two domains. The Redirect
(Host) Addresses may be notified dynamically during session establishment over Master Connection Pair (9.1.1).

An example of a Redirect (Host) Address is:

host2.serviceprovider.com.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 29 (129)

6.6 Features and Functions

SSP supports the server interoperability features and functions defined and described in features and functions document.

6.6.1 Security

The scope of security in the server interoperability is the server-to-server communication at the IMPS application level, i.e. to
ensure that the data sent and/or received on behalf of an End User in a given IMPS domain is actually originating from and/or
terminating at the server in that domain.

SSP supports the security requirement in the server interoperability through the CALLBACK connection establishment and
access control across session management and transaction management. Please refer to section 6.1.1 for details of
CALLBACK connection establishment.

SSP supports the security requirement in the server interoperability through the underlying transport layer whenever possible.

The individual domain security enhances the overall security level in the server interoperability.

6.6.2 Connection Management

SSP connection management ensures the authenticated connections to transport SSP transactions during SSP sessions.
Connection management includes connection establishment, connection termination and connection maintenance.

SSP supports CALLBACK connection establishment.

SSP supports the implicit connection termination and connection maintenance through session management. SSP session
maintenance covers connection maintenance, and SSP session termination covers connection termination. Connection
termination causes the session termination if no more connection exists.

6.6.3 Transaction Management

The transaction management defines the necessary common information elements in the service requests and service
responses at transaction level, regulates the behavior in the transaction flows, and handles the exception and error conditions
at transaction level.

6.6.4 Session Management

SSP supports the authentication among the WV SAP’s. The WV SAP’s must authenticate each other before they can provide
each other with the IMPS services.

SSP supports the authorization and access control among the WV SAP’s so that the servers and the gateways are allowed to
access the IMPS services provided by each other.

SSP session management includes session establishment, session termination and session maintenance. The CALLBACK
connection establishment shall be used in the session establishment. The access control is supported in the whole session
management.

6.6.5 Service Management

SSP supports service discovery among the WV domains. The services include Common Services, Presence Service, Instant
Messaging (IM) Service, Group Service and Shared Content Service that are defined in the “Features and Functions”
document. However, those services are discovered in the element level rather than the protocol level. SSP only provides a
protocol method and facilitates the message exchange to support the service discovery.

SSP supports the service negotiation and agreement among the WV domains. The service agreement may be made either
online or offline. The service agreement must be made before they can provide each other with the IMPS services.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 30 (129)

6.6.6 User Profile Management

SSP supports the exchange of user profile information among the WV domains including the list of services to which a user
subscribes, the service status (active / inactive), privacy status with regard to network service capabilities (e.g. user location,
user interaction), terminal capabilities, the user account status etc.

User Profile Management features can support various functions based on the exchange of user profile information.

6.6.7 Service Relay

SSP supports the service relay among the WV domains including the functional relay of the common IMPS features,
presence features, IM features, group features and shared content features that are defined in “Features and Functions”
document. The goal of SSP is to support the distributed interoperable complementary IMPS services across service provider
domains.

Due to the nature of the server interoperation, the SSP has its own requirement on meta-information and information
elements in the primitives at transaction level. The complete primitives and transaction flows at SSP semantics level have
been defined in the following sections including functional relay services.

Please refer to the CSP document so as to conclude how to relay the complete IMPS features from client-server interaction
(CSP) to server-server interoperation (SSP).

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 31 (129)

7. Security

The scope of security in the server interoperability is the server-to-server communication at the IMPS application level, i.e.,
to ensure that the data sent and/or received on behalf of an End User in a given IMPS domain is actually originating from
and/or terminating to the servers in that domain.

7.1 Trust Models

A TRUST model is assumed between the WV SAP and the Service Elements within a single IMPS domain.
A TRUST model is assumed for the network infrastructure such as DNS.
The TRUST model is mutual, i.e., A trusts B if and only if B trusts A.

The TRUST model is created between domain A and domain B if and only if they have been authenticated and authorized by
each other. A TRUST model must be created between two domains before they can provide each other with interoperable
complementary IMPS services.

7.2 Access Control

The authentication and authorization between the servers in different domains are accomplished by the access control at each
server. The scope of access control covers online session management, transaction management and offline configuration
agreement.

The online session management includes the initial CALLBACK connection establishment, authentication and authorization
to start a session, session maintenance and session termination.

The transaction management supports the access control by the transaction authentication based on the information elements
specified in each service request and service response.

The offline configuration agreement includes, but is not limited to, server identity registration, Host-ID, account creation,
password protection, configurable parameters, SAP Service Routing Table, etc. through provisioning and / or administration
interface.

7.3 Transport Security

The security requirement in the transport layer and other underlying layers, such as data integrity and confidentiality, is out of
the scope of SSP. However, whenever possible, current security approach including SSL / TLS, PGP, PKI, digital
certificates, etc. in the underlying transport layer should be used to ensure the secure transmission in the underlying layers to
prevent from out-of-scope security issues. The deployed security technology is negotiated between the service providers
through the offline configuration agreement.

7.4 Individual Domain Security

The security of an individual domain enhances the inter-domain security. A single IMPS domain is encouraged to use
firewalls or other precautions to ensure the highest possible level of security.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 32 (129)

8. Transaction Management

The transaction management defines the necessary common information elements in the service requests and service
responses at transaction level, regulates the behavior in the transaction flows, and handles the exception and error conditions
at the transaction level.

8.1 Meta-Information

The SSP service requests must contain the meta-information as defined in table 1.

Information Element | Req Type Description

Client-Originated M Boolean Indicates whether the request is originated from the client
(“True”) or from the service element (“False™).

Session-ID M String Identifies the session managed by the Provider Server.

Transaction-ID M String Identifies the transaction originated from the transaction
initiator (either requestor server, or provider server).

Service-ID M String Identifies the initiator domain (and the service element if
needed).

User-ID C String Identifies the user represented by the requestor server
domain. It is present if the request is originated from a
client.

Client-ID O String Identifies the Client-ID of the user. It optionally present

if the request is originated from a client.

Table 1. Information elements in Meta-information primitive

The Session-ID is unique for each session at the Provider Server.
The Transaction-ID is unique for each transaction originated from the server that initiates the transaction.

An SSP service response in a two-way transaction must contain the same Session-ID and the Transaction-ID as those in the
service request.

Some implementation notes are as follows.
1. The SAP at the service provider server should maintain a Session Record for each service requestor.
2. The SAP at the service requestor should maintain a Transaction Record for each service provider.

3. The SAP at each server should maintain a Transaction Table to map each requested transaction from its Service
Requestor to the initiated transaction to its Service Provider. The Transaction Table should be the uniquely one-
one match. Therefore, the Service Relay flow and Result Forward flow at each hop is clearly and uniquely
identified by the transaction flows.

8.2 Status Primitive

The status primitive in the service response is defined as follows in table 2.

Information Req Type Description
Element
Session-ID M String Identifies the session. It should be consistent with the

Session-ID in the Meta-Information in the request.

Transaction-ID M String Identified the transaction. It should be consistent with
the Transaction-ID in the Meta-Information in the

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 33 (129)

request.
Status code M String Status code of the processing result.
Status description o String Textual description of the status.

Table 2. Information elements in Status primitive

8.3 Asynchronous Transaction

The server shall support asynchronous transactions.

8.4 General Error Handling

In two-way transactions, after a transaction is initiated, the originating server is expecting the response from the processing
server. In multi-way transactions, after a transaction is initiated, one server is expecting the response from the other server.

Whenever an error occurs, the processing server shall handle the exception based on its own policy. In addition, the
processing server shall inform the other server involved in this transaction of such an exception by sending the Status
primitive with an appropriate Status Code and optional Status Description. More precisely if the processing server sends
Status Code 2XX then it SHALL be sent in the response primitive specified for the transaction. Otherwise Status primitive
SHALL be used.

8.5 Invalid Transaction

A transaction is considered “valid” if the transaction completes within a reasonable period. The transaction validity time is
the sum of the network latency, transaction processing time and an adjustable offset. Those three elements must be
configurable at each service domain by the operator. Each operator shall define and configure the reasonable value of the
three elements based on the network, hardware and software capacity to ensure the quality and performance of the service as
well as the security.

A transaction is considered “invalid” if the transaction cannot complete within the validity time.

If an invalid transaction occurs, the service requestor shall not receive a response from the provider domain. The service
requestor shall repeat the transaction for reasonable times until the transaction completes or the repeat times expire. If the
transaction completes, the session shall go on for the future transactions. If the repeat times expire, the session shall be
terminated by the requestor for security reason. In addition, the requestor-maintained session, which provides the other side
with its own service, shall be terminated also.

The repeat times must be configurable at each service domain by the operator. Each operator shall define and configure a
reasonable value of repeat times to ensure the quality and performance of the service as well as the security. The repeat times
may be zero (0) if security is the major concern.

8.6 Unknown Transaction

A transaction is considered “unknown” if (1) the request message has syntactic error (e.g. not XML well-formed, XML
invalid, data value error); or (2) any of the information elements of the Meta-Information is invalid; or (3) the service request
refers to a service that doesn't correspond to the service agreement between the service requester and provider; or (4) the
service response cannot be associated with the original service request.

If an unknown transaction happens in a service request, the provider domain shall return a status code indicating an
“Unknown Transaction” error. If the unknown transaction happens frequently, the provider domain shall terminate the
session as well as the session maintained by the requestor for security reasons.

The definition of “Unknown Transaction Frequency” is up to each server implementation. However, the value of “Unknown
Transaction Frequency” must be configurable at each service domain by the operator. Each operator shall define and
configure a reasonable value of “Unknown Transaction Frequency” to ensure the quality and performance of the service as

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 34 (129)

well as the security. The server may terminate the sessions immediately after an unknown transaction happens if security is
the major concern.

If an unknown transaction happens in a service response, the requestor shall perform the same behavior as that in handling
“invalid transaction”.

8.7 General Status Code

All SSP transactions may return the following status codes:
e Continue (100) — for all complementary transactions
* Queued (101) — for all complementary transactions
e Started (102) — for all complementary transactions
e Server queued (104)
* Bad Request (400)
* Service not supported (405) — for all complementary transactions
» Service Unavailable (503)
e Invalid Timeout (504)
* Service not agreed (506) — except transactions required for the service agreement
* Internal Server Error (500)
» Invalid server session (620) — except transactions allowed outside of a session
e Multiple errors (900)
* Not logged in (604)
e Bad parameter (402)
* Forbidden (403)
* Not found (404)

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 35 (129)

9. Session Management

SSP session management includes session establishment, session termination and session maintenance. The CALLBACK
connection establishment is used in the session establishment. The access control is supported in the whole session
management.

9.1 Access Control

9.1.1 Session Establishment

The session is established through the connection establishment and initial authentication and authorization between the
servers in different domains.

The CALLBACK connection establishment is used in the session establishment. The basic session establishment with the
CALLBACK connection is as follows.

Prerequisites:
* A-Host-ID represents the unique access point to domain A.
* B-Host-ID represents the unique access point to domain B.
» Offline configuration agreement has been established between Server A and Server B.

* In Server A, Server B’s identity is registered with at least { B-Host-ID, B-Service-ID, B-
password } tuple. An empty B-password is valid.

* In Server B, Server A’s identity is registered with at least { A-Host-ID, A-Service-ID, A-
password } tuple. An empty A-password is valid.

* Both servers has registered and supported a common digest schema such as MD5 or SHA.

The basic steps are:

1. Server A originates a connection 1 to Server B based on its own registration record about Server B,
containing { A-Service-ID, A-secret-token} tuple.

2. Server B looks for { A-Service-ID} in its own registration record. If it is not found, Server B closes the
connection.

3. Server B initiates connection 2 to the Server A containing { B-Service-ID, B-secret-token }.

4. Server A looks for { B-Service-ID } in its own registration record. If it is not found, Server A closes the
connection.

5. Server A sends the LoginRequest to Server B through connection 1, containing { A-Service-1ID, A-
password-digest }. The “A-password-digest” is generated with A-password and B-secret-
token based on the common digest schema in the registration record.

6. Server B sends the LoginRequest to Server A through connection 2, containing { B-Service-ID, B-
password-digest }. The “B-password-digest” is generated with B-password and A-secret-
token based on the common digest schema in the registration record.

7. Server B verifies the A-password-digest. If the verification fails, it closes the connection.

8. Server B responds to Server A with the LoginResponse through connection 2, containing the status of
the transaction and the new session information maintained by Server B. The LoginResponse may
contain an optional list of Redirect (Host) Names. This is also called the Redirect List.

9. Server A verifies the B-password-digest. If the verification fails, it closes the connection.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 36 (129)

10. Server A responds to Server B with the LoginResponse through connection 1, containing the status of
the transaction and the new session information maintained by Server A. The LoginResponse may
contain an optional list of Redirect (Host) Names. This is also called the Redirect List.

The secret-token is arandom string generated by the connection originator at each server.

After step 10 succeeds, two domains are authenticated with each other. The session pair between Server A and Server B are
established with trust over two connections, i.e. the connection pair. The connection pair (1 and 2) between A-Host-ID and
B-Host-ID is called “Master Connection Pair”.

The “Redirect List” reflects the server’s desire and capability to handle the redirect. If the server does not include the
“Redirect List” in its LoginResponse, the server does not support the redirect, and the server intends to use the “Master
Connection Pair” to support the session. In this case, the other server shall not try the connection pair establishment unless a
new redirect process takes place. Therefore, even if the server does not have its own “Redirect List”, but if the server
supports the redirect of the other server, it MUST provide a “Redirect” List in the LoginResponse. In this case, the
“Redirect List” contains only its original Host-1D.

If the “Redirect List” is included in both of the LoginResponses, i.e. in both Step 8 and Step 10, the redirect takes place.
Otherwise the Master Connection Pair (1 and 2) shall be used to support the session.

If the “Redirect List” is included in the LoginResponse in Step 8 and Step 10, both of the domains want to use the new
“Redirect List” as the physical connections to support the session. The connection pair(s) shall be handed over to the actual
physical nodes, and the Master Connection Pair (1 and 2) shall be disconnected. If there is more than one Redirect (Host)
Names in either of the “Redirect List”, a mesh of redirect connection pairs shall be initiated to support the session pair. A
mesh means that every single host connects to all remote hosts.

Figure 10. Mesh of redirect connection pairs

After establishing a session there may be an optional online service negotiation and service agreement depending on the
offline agreement between two domains. If the online service negotiation and service agreement is needed, it shall be the first
transaction in the session pair.

Two servers will provide each other with the IMPS services after the authorization (i.e. online service negotiation and service
agreement) if needed, or otherwise right after the session establishment.

There are at least two connections, the connection pair, to carry the session pair. The servers may establish more than one
connection pair to support the same session pair. The redirect connection pair between two redirect physical hosts in two
domains is established through the same steps except that the redirect connection pair shall be bound to the existing session
pair between two domains. The “Redirect List” in Step 8 and Step 10 of session establishment may have set up a mesh of
more than one redirect connection pair. Within the session, if additional (mesh of) redirect connection pair(s) is needed, the
same Session Establishment steps with the “Redirect List” in Step 8 and Step 10 shall be repeated except that the Master
Connection Pair shall be bound to the existing session pair and no new session shall be created. The “Redirect List” shall
initiate the establishment of a new mesh of redirect connection pairs. Note that the “Redirect List” is only allowed over the
Master Connection Pair. Also note that no new session shall be established when setting up redirect connection pairs. There
is always one session pair between two domains no matter how many redirect connection pairs are created. When creating
redirect connection pairs online service negotiation and service agreements may not be made.

Connections are reusable. Each session may use some or all of the connections to transport its transactions. Each connection
may be used by only one session, or reused by both sessions. In the simplest case, one possiblity is that Connection 1 will be

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 37 (129)

used for the service session provided and managed by Server B, and connection 2 will be used for the service session
provided and managed by Server A.

SSP Transport Binding document [SSP Trans] shall define how to bind session pairs to reusable connections by the
underlying transport.

91.2 Session Maintenance

Server A and Server B shall maintain the session and keep the session alive by exchanging the live traffic if needed during
the session. The initial interval is negotiated during session establishment. The interval may be adjusted by negotiating a new
interval when exchanging the live traffic.

The session maintenance may be required periodically as an intermediary (e.g. proxy) may break the connection, resulting in
terminating the session, if there is no data traffic for a reasonable time period. The session maintenance may also be required
periodically in the case where the server policy requires the termination of the session if there is no transaction activity for a
reasonable time period. If session maintenance is required for one session, it is usually also required for the other (reciprocal)
session.

The interval must be configurable at each service domain by the operator. The operators shall define and configure a
reasonable value of “interval” to ensure the quality and performance of the service as well as the security. The interval
configuration must be adjustable on-the-fly.

The session maintenance shall be performed over all of the connections used by the current session, thus covering the
connection maintenance.

9.1.3 Session Termination

The session shall be able to be terminated by either Server A or Server B at any time. Both of the sessions managed by Server
A and Server B must be terminated to ensure security.

A session may be terminated normally. For example, if the service agreement expires, or the session expires. If any of the
service agreements expires, or any of the sessions expire, both of the sessions are terminated.

A session may be terminated abnormally. For example, if an invalid session occurs, or the connection (due to the underlying
transport) breaks. If all of the connections of one session break, both of the sessions are terminated. However, even if some
connections are terminated due to load balancing or some other reason, as long as there is at least one connection for each
session, the session pair SHALL NOT be terminated.

The session termination covers and implies the connection termination. Whenever the session is terminated, all of the
connections used by this session shall also be terminated.

914 Session Re-establishment

If the sessions are terminated, two servers may re-establish the session based on their offline service agreement. The session
re-establishment means creating a new session pair, and follows the same steps in establishing the session.

9.2 Primitives
9.2.1 The "SendSecretToken" Primitive

The "SendSecretToken" primitive is issued by the requestor server to send the secret token for the provider server as the
first step of the CALLBACK connection establishment.

Information Element Req Type Description
Message-Type M SendSecretToken Message identifier
Transaction-ID M String Identifies the transaction originated from
the initiating provider server.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 38 (129)

Service-ID M String Identifies the requestor server.

Protocol M “WV-SSP” SSP protocol.

Protocol-Version M “1.2” SSP protocol version.

SecretToken M String Secret token originated by the requestor.

Table 3. Information elements in SendSecretToken Primitive

9.2.2 The “LoginRequest” Primitive

The LoginRequest primitive is issued from the requestor server to create a new session or a new connection pair inside
the existing session with the provider server. The LoginRequest primitive specifies initial status of the requestor server.
The LoginRequest primitive MAY also contain the time-to-1ive attribute, which specifies the time that the session
or the connection will expire. If time-to-1ive attribute is omitted, the requestor server requests an infinite session or
connection until the service agreement expires.

Information Element Req Type Description
Message-Type M LoginRequest Message identifier
Session-ID C String Identifies the session. It is present when

creating additional redirect connection pairs
within the existing session.

Transaction-ID M String Identifies the transaction. It should be
consistent with the Transaction-ID in the
SendSecretToken originated from the
provider server.

Service-ID M String Identifies the requestor server.

Redirect-HostID O String Identifies the requestor host if the connection
is a redirected connection pair.

Password-Digest M String The password digest generated with
password and secret token based on a
common digest schema (MDS5 or SHA).

Time-To-Live O Integer in Seconds | Interval for a valid session or connection
before expired. If omitted, the requestor
server requests an infinite session or
connection.

Table 4. Information elements in LoginRequest Primitive

9.2.3 The “LoginResponse” Primitive

The LoginResponse primitive is issued from the provider server to accept the session creation or connection pair creation
with the requestor server. In the response the provider server MAY specify the time-to-1ive of the current session. This
time-to-1ive may be different from that in the LoginRequest from the requestor server.

Information Element Req Type Description
Message-Type M LoginResponse Message identifier
Status-Info M Structure of Status- | The necessary status information in a service
Primitive response defined in 8.2.
Time-To-Live 0] Integer in Seconds | Interval for a valid session or connection
before expired. This time may be any value

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 39 (129)

other than zero.

List-of-Hosts (0] Structure “Redirect” list, which indicates the actual
connection addresses in its own domain.

Table 5. Information elements in LoginResponse Primitive

9.2.4 The “LogoutRequest” Primitive

The LogoutRequest primitive allows the requestor server to close the session with the provider server.

Information Element Req Type Description
Message-Type M LogoutRequest Message identifier
Session-ID M String Identifies the session.
Transaction-ID M String Identifies the transaction.

Table 6. Information elements in LogoutRequest

925 The “Disconnect” Primitive

The Disconnect primitive allows the provider server to indicate that it accepts the LogoutRequest from the requestor
server and closes the session.

If the provider server does not receive any session maintenance update within the time-to-live interval (see KeepAlive
primitive) from requestor server, the provider server will also close this session by sending the Di sconnect message to the
requestor server.

Information Req Type Description
Element
Message-Type M Disconnect Message identifier
Session-ID C String Identifies the session. Present if the provider

server initiates the Disconnect.

Transaction-ID C String Identifies the transaction. Present if the provider
server initiates the Disconnect.
Status-Info C Structure of Status- The status information (see 8.2). Present if the
Primitive requestor server Logout.

Table 7. Information Elements in Disconnect Primitive

9.2.6 The “KeepAliveRequest” Primitive

The “KeepAliveRequest® primitive allows the requestor server to maintain the session and update the time-to-live
interval with the provider server. The session maintenance shall be performed over all of the connections used by this
session, thus implies and covers the connection maintenance for each connection. The TTL may have different values for
different connections.

Information Element Req Type Description
Message-Type M KeepAliveRequest Message identifier
Session-ID M String Identifies the session.
Transaction-ID M String Identifies the transaction.
Time-to-live O Integer in Seconds Indicates the time-to-live of the session
over this connection.

Table 8. Information Elements in KeepAliveRequest Primitive

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 40 (129)

9.2.7 The “KeepAliveResponse” Primitive

The KeepAliveResponse primitive allows the provider server to maintain the session and update the time-to-live interval
with the requestor server. The session maintenance shall be performed over all of the connections used by this session, thus
implies and covers the connection maintenance for each connection. The TTL may have different value for different
connection.

Information Element | Req Type Description
Message-Type M KeepAliveResponse Message identifier
Status-Info M Structure of Status- The status information (see 8.2).
Primitive
Time-to-live o Integer in Seconds Indicates the time-to-live of the session
over this connection.

Table 9. Information Elements in KeepAliveResponse Primitive

9.3 Transactions
9.3.1 The “Login” Transaction

Server A Server B
Step 1: A sends A's SendSecretToken in Connection 1 o
P Step 3: B sends B's SendSecretToken in Connection 2 i
Step 5: A sends A's LoginRequest in Connection 1 R
P Step 6: B sends B's LoginRequest in Connection 2 g
P Step 8: B sends A's LoginResponse in Connection 2
A Step 10: A sends B's LoginResponse in Connection 1 -

Figure 11. The “Login” Transaction

Session establishment and additional redirect connection establishment are achieved through a “Login” transaction.

The Server A performs Step 1 and sends A’s SendSecretToken to Server B through Connection 1. After the Server B
performs Step 2, the Server B performs Step 3 and sends B’s SendSecretToken to Server A through Connection 2. After
the Server A performs Step 4, the Server A performs Step 5 and sends A’s LoginRequest to Server B through Connection
1. The Server B performs Step 6 and sends B's LoginRequest to Server A through Connection 2. Finally, the Server B
performs Steps 7 & 8, and replies with A’s LoginResponse to Server A through Connection 2, and A performs Steps 9 &
10 and replies with B’s LoginResponse to Server B through Connection 1.

Step 1, Step 6 and Step 10 share the same Transaction-1ID thatis generated by Server A in step 1.
Step 3, Step 5 and Step 8 share the same Transaction-1ID thatis generated by Server B in step 3.

After step 10 succeeds, two domains are authenticated with each other. The session pair between Server A and Server B is
established with trust over two connections, i.e. the connection pair. The connection pair (1 and 2) between A-Host-ID and
B-Host-ID is called “Master Connection Pair”.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 41 (129)

The “Redirect List” reflects the server’s desire and capability to handle the redirect. If the server does not include the
“Redirect List” in its LoginResponse, the server does not support the redirect, and the server intends to use the “Master
Connection Pair” to support the session. In this case, the other server shall not try a connection pair establishment unless a
new redirect process takes place. Therefore if the server does not have its own “Redirect List”, but if the server supports the
redirect of the other server, it MUST provide a “Redirect” List in the LoginResponse. In this case, the “Redirect List”
contains its original Host-ID only.

If the “Redirect List” is included in both of the LoginResponses, i.e. in both Step 8 and Step 10, the redirect takes place.
Otherwise the Master Connection Pair (1 and 2) shall be used to support the session.

If the “Redirect List” is included in the LoginResponse in Step 8 and Step 10, both of the domains should use the new
“Redirect List” as the physical connections to support the session. The connection pair(s) shall be handed over to the actual
physical nodes, and the Master Connection Pair (1 and 2) shall be disconnected. If there are more than one Redirect (Host)
Names in either of the “Redirect List”, a mesh of redirect connection pairs shall be initiated to support the session pair.

There are at least two connections, the connection pair, to carry the session pair. The servers may establish more than one
connection pair to support the same session pair. The redirect connection pair between two redirect physical hosts in two
domains is established through the same steps except that the redirect connection pair shall be bound to the existing session
pair between the two domains. The “Redirect List” in Step 8 and Step 10 of session establishment may have set up a mesh of
more than one redirect connection pair. Within the session, if additional (mesh of) redirect connection pair(s) is needed, the
same Session Establishment steps with the “Redirect List” in Step 8 and Step 10 shall be repeated except that the Master
Connection Pair shall be bound to the existing session pair and no new session shall be created. The “Redirect List” shall
initiate the establishment of a new mesh of redirect connection pairs. Note that the “Redirect List” is only allowed over
Master Connection Pair. Also note that no new session shall be established when setting up redirect connection pairs. There
is always one session pair between two domains no matter how many redirect connection pairs are created. While creating
redirect connection pairs an online service negotiation and service agreement may not be made.

Primitive Direction
SendSecretToken Requestor Server <— Provider Server
LoginRequest Requestor Server — Provider Server
LoginResponse Requestor Server < Provider Server

Table 10. Primitive Directions for Login Transaction

9.3.2 The “Logout” Transaction

Requestor Provider
Server Server
LogoutRequest
>
Disconnect

Disconnect (for the other session)

Figure 12. The “Logout” Transaction

Session termination is achieved through “Logout” and “Disconnect” transactions. All of the connections used by this session
shall be terminated as well after the session is finished.

The requestor server can logout from the provider server and close the session through a “Logout” transaction. In addition the
requestor also shall terminate the other session through a “Disconnect” transaction that is illustrated in the dashed line.

The requestor server sends a LogoutRequest request to the provider server. After the provider server finishes processing
the request, it sends a Di sconnect response to the requestor server to indicate the close of the session.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 42 (129)

Primitive Direction
LogoutRequest Requestor Server — Provider Server
Disconnect Requestor Server <— Provider Server

Table 11. Primitive Directions for Logout Transaction

9.3.3 The “Disconnect”’” Transaction

Requestor Provider
Server Server
Disconnect
l¢ I
«

LogoutRequest (for the other session)

Figure 13. The “Disconnect” Transaction

The provider server may close the session through a “Disconnect” transaction. Under such conditions the provider also shall
terminate the other session through a “Logout” transaction that is illustrated in the dash lines.

Primitive Direction
Disconnect Requestor Server <— Provider Server

Table 12. Primitive Directions for Disconnect Transaction

9.3.4 The “KeepAlive” Transaction

Requestor Provider
Server Server

KeepAliveRequest

KeepAliveResponse

A

Figure 14. The “KeepAlive” Transaction

Session maintenance is achieved through the “KeepAlive” transaction. A “KeepAlive” transaction shall be performed over
all of the connections used by this session, thus implies and covers the connection maintenance for each connection. The TTL
may have different value for different connection.

The requestor server updates the time-to-live interval and keeps the session and the connection(s) alive through the
“KeepAlive” transaction(s).

The requestor server sends a KeepAliveRequest request to the provider server. After the provider server finishes
processing the request, it sends a KeepAliveResponse response to the requestor server to indicate the status of the
session over this connection. The KeepAliveRequest may carry a new time-to-live interval. The time-to-live value
returned in the KeepAliveResponse response may differ from that in the request.

The “KeepAlive” transaction may be required periodically in case an intermediary (e.g. proxy) breaks the connection,
resulting in terminating the session, if there is no data traffic for a reasonable time period.

The “KeepAlive” transaction may be required periodically in case the server policy requires the termination of the session if
there is no transaction activity for a reasonable time period.

If “KeepAlive” is required for one session, it is usually also required for the other, complementary, session.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 43 (129)

Primitive Direction
KeepAliveRequest Requestor Server — Provider Server
KeepAliveResponse Requestor Server <— Provider Server

Table 13. Primitive Directions for KeepAlive Transaction

9.4 Status Code

9.4.1 “Login” Transaction
e Unknown Service-ID (606)
e Redirection refused (607)

* Invalid password. (608)

9.4.2 “Logout’/ “Disconnect’ Transaction

* Session Expired (600)

* Connection expired (609)

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 44 (129)

10.Service Management

The service management in SSP enables the Wireless Village servers to mutually agree on the usable Wireless Village
services. The usable services offered by a server are arranged in a negotiation tree.

10.1 Service Structure

The Wireless Village services are organized in a hierarchy:
» Features — a specific set of related functionality
* Functions — defines a set of related transactions for each feature
* Transactions — defines a set of related primitives for each function

* Information Elements — the lowest level building blocks of the transactions

A Wireless Village server may support all or a subset of the features. However, if a WV server supports a feature, some
functions and transactions must be supported to ensure minimal interoperability [SSP SCR]. The remaining functions and
transactions are optional. Moreover, there are multiple choices in the semantics for some of the functions and transactions,
e.g. the general search transaction with search-type USER-ID is mandatory while all other search types are optional.

The optional functions, transactions, and choices offered by a server are arranged in a service tree, as shown in Figure 14.
Each node in the tree specifies the functions, transactions, and choices that must be supported by the server that includes that
node in its Service-List.

Each node in the service tree defines a group of one or several transactions or choices. The content of each node and how the
tree should be interpreted are described below. The transactions that are not described are considered mandatory functions
that must be always supported in the servers.

10.2 General

If a Feature node is included in the Service-List, all mandatory requirements for that specific feature must be supported as
specified in [SSP SCR].

If a lower level node is included in the Service-List, all transactions or choices specified by that node must be supported.

10.3 SAP Feature

* Service Negotiation node includes the following transactions
* GetAvailableService
* Servicelndication
* SetServiceAgreement
e User Profile management node includes the following transactions
* GetUserProfile
» UpdateUserProfile

» Service Relay node indicates if the SAP supports service relay including routing

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 45 (129)

WYV SSP Services

SAP Common IMPS Presence IM Group
Feature Feature Feature Feature Feature
]] - — |]
Service . | Contact List Send 4{ Group Mgmt ‘
— - — Invite cases —
negotiation Get Message 4{ Get b ‘
et member
‘ .
User Profile Presence | || Contact List —{ Member mgmt ‘
| management 1 attri Update — Groups
attributes 4{ Reioct list ‘
eject lis
) | | Shared Auth- — Contacts
L Service Relay contents | — .-ation
|| Instant Push ms
messages 4{ 9 ‘
— Watcher List 4{ Notif ‘
y msg

Group —{ Get msg ‘

Complement | [Attribute List —{ Delivery Mtd ‘

Invite
—{ Get msg list ‘
Contact List 4{
— Reject msg ‘

— Search Addr
—{ Delivery Report ‘

User —{ Blocking ‘

—{ Group History ‘

—{ Msg List ‘

Group

— VerifyUser

Figure 15: SSP Service tree

10.4 Common IMPS feature

e Invite node includes the Invitation/Cancel-Invitation transactions
* All supported invite types must be included in the Service List (Presence, IM, Shared Content, Group)

e Complementary Invite node includes the Complementary Invitation/Cancel-
Invitation transactions

» If the Complementary invite node is included in the Service-List, the Invite cases node must be included as
well.

* Search node includes the optional choices for the GeneralSearch. All
supported search types must be included in the Service List i.e.

* User: Support Presence attributes criteria
* Group: Support Group related criteria
* VerifyUser node includes the following transactions:

e VerifyWVID

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 46 (129)

10.5 Presence Feature

Contact List Get node includes the following transactions:
GetContactList
GetListMember
GetListProperties
Contact List Update node includes the following transactions:
CreateContactList
DeleteContactList
AddListMember
RemoveListMember

SetListProperties

Authorization node includes the following transactions

ReactiveAuthorizarion
Cancel Authorization
GetReactiveAuthStatus
Watcher List node includes the following transaction

GetWatcherList

Attribute List node includes the following transactions

CreateAttributeList
DeleteAttributeList
GetAttributeList

Contact List Addr node indicates if the contacts 1list

addressing users in the following transactions

10.6

ForwardMessage transactions.

Subscribe
UnSubscribe
GetPresence
UpdatePresence

Suspend Presence

IM Feature

is

valid for

Send Msg node includes the optional choices for the SendMessage and

Service List i.e.

Group-ID: Support recipient as Group-ID and addressing by screen name
ContactList-ID: Support recipients listed by Contact List ID
Push Msg node includes the following transaction

PushMessage

All supported ID types must be included in the

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 47 (129)

* Notify Msg node includes the following transaction
* MessageNotification

* Get Msg node includes the following transaction
* GetMessage

* Delivery Mtd node includes the following transaction
* SetMessageDeliveryMethod

* Get Msg List node includes the following transaction
* GetMessageList without group functionality

* Reject Msg node includes the following transaction
* RejectMessage

* Delivery Report node includes the following transaction
* NotifyDeliveryStatusReport

* Blocking node includes the following transactions
* BlockUser
* GetBlockedList

* Group History node indicates if the IM service element supports group chat
cashing functionality.

* Msg List node includes the optional choices for the GetMessagelist
transaction (Undelivered messages)

10.7 Group Feature

e Group Mgmt node includes the following transactions
* CreateGroup
* DeleteGroup
e Get Member node includes the following transaction
* GetJoinedMember
* Member mgmt node includes the following transactions
* AddGroupMember
* GetGroupMember
* RemoveGroupMember
* MemberAccess
* Reject list node includes the following transactions

* RejectList

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 48 (129)

10.8 Primitives
10.8.1 The “GetServiceRequest” Primitive

The GetServiceRequest primitive is issued from the requestor server to discover the available services provided by the
provider server.

Information Element Req Type Description
Message-Type M GetServiceRequest Message identifier
Meta-Information M Structure of Meta- The necessary meta-information in a

information service request defined in 8.1.

Table 14. Information elements in GetServiceRequest Primitive

10.8.2 The “ServiceList” Primitive

The ServiceList primitive is issued from the provider server to indicate its available services.

Information Req Type Description
Element
Message-Type M ServiceList Message identifier
Meta-Information C Structure of Meta- | The necessary meta-information in a service
information request defined in 8.1. Present if the provider

initiates Servicelndication.

Status-Info C Structure of Status- | The status information (see 8.2). Present if the
Primitive requestor initiates GetServiceRequest.
Service-List M Structure List of available services in a tree structure.

Table 15. Information elements in ServiceList Primitive

10.8.3 The “ServiceNegotiation” Primitive

The ServiceNegotiation primitive is issued from the requestor server to negotiate the desired services that will be
committed and provided by the provider server. The provider server sends the ServiceAgreement primitive to confirm
the agreed services with the requestor server.

Information Req Type Description
Element
Message-Type M ServiceNegotiation Message identifier
Meta-Information M Structure of Meta- The necessary meta-information in a service
information request defined in 8.1.

Desired-Service-List | M Structure List of desired services in a tree structure

Desired-Sub-Protocol | O String Desired sub-protocol and its version for
proprietary protocol extensions

Time-to-live o Integer in Seconds Indicates the desired time-to-live of the
service agreement

Table 16. Information elements in ServiceNegotiation Primitive

10.8.4 The “ServiceAgreement” Primitive

After the provider server receives the ServiceNegotiation primitive from the requestor server, the provider server shall
send the ServiceAgreement primitive to confirm the agreed services with the requestor server.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 49 (129)

Information Element | Req Type Description

Message-Type M ServiceAgreement Message identifier

Status-Info M Structure of Status- The status information (see 8.2).

Primitive

Agreed-Service-List M Structure List of agreed services in a tree structure

Agreed-Sub-Protocol 0] String Agreed sub-protocol and its version for
proprietary protocol extensions

Agreed-Time-to-live o Integer in Seconds Indicates the agreed time-to-live of the
service agreement

Table 17. Information elements in ServiceAgreement Primitive

10.9 Transactions

10.9.1 The “GetAvailableService” Transaction

Requestor Provider
Server Server
GetServiceRequest
ServicelList
<

Figure 16. The “GetAvailableService” Transaction

SSP supports service discovery among the WV domains. The services include Common Features, Presence Service, Instant
Messaging (IM) Service, Group Service and Shared Content Service that are defined in “Features and Functions” document.

5

The requestor server discovers the available services provided by the provider server through a “GetAvailableService’
Transaction.

The requestor server sends a GetServiceRequest request to the provider server inquring about the available services.
After the provider server finishes processing the request, it sends a ServiceList response to the requestor server with the
available service information.

Primitive Direction
GetServiceRequest Requestor Server — Provider Server
ServiceList Requestor Server <— Provider Server

Table 18. Primitive Directions for GetAvailableService Transaction

10.9.2 The “Servicelndication” Transaction

Requestor Provider
Server Server
| ServicelList ‘

|‘ |

Figure 17. The “ServiceIndication” Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 50 (129)

The provider server also informs the requestor server of any change in the available services through a “Servicelndication”
Transaction. It depends on the offline service agreement between two domains to decide what the subsequent actions to be
taken are.

The provider server sends a ServiceList request to the requestor server and indicates the available services on-the-fly.

Primitive Direction
ServiceList Requestor Server < Provider Server

Table 19. Primitive Directions for Servicelndication Transaction
10.9.3 The “SetServiceAgreement” Transaction

Requestor Provider
Server Server

ServiceNegotiation

»
Ll

ServiceAgreement

A

Figure 18. The “SetServiceAgreement” Transaction

The service agreement between the requestor and provider servers is established through a “SetServiceAgreement”
Transaction.

The ServiceNegotiation request is issued from the requestor server to request and negotiate the agreement on the
services that will be committed to and provided by the provider server. The provider server sends the ServiceAgreement
response to confirm the agreement with the requestor server.

After a service agreement is confirmed, the servers may perform interoperable IMPS services.

Primitive Direction
ServiceNegotiation Requestor Server — Provider Server
ServiceAgreement Requestor Server < Provider Server

Table 20. Primitive Directions for SetServiceAgreement Transaction

10.10 Status Code

* Version Not Supported (505)

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 51 (129)

11.Interoperability Management — User Profile
Management

These transactions are needed for the complementary services.

11.1 User Profile

User Profile consists of general user information and service-specific user information. The general user information includes
the services to which the user subscribes, the service status (active / inactive), the privacy status with regard to network
service capabilities (e.g. user location, user interaction), terminal capabilities, user account status, etc. The service-specific
user information includes the user-related information for each specific service element.

The general user information is defined as follows:

General UP Attribute Value Description
User.Account.Status “ON” | Status of user account — active or inactive
K‘OFFS’
User.Privacy.Location “ON” | Status of location privacy — private or not
GLOFF,’
User.Privacy.Interaction “ON” | Status of Interaction privacy — private or not
K‘OFFS’
Services.Common “YES” | Whether or not Common service is subscribed
GLNO’?
Services.Common.PSE Domain PSE of Common service. See 6.3.1 for Domain
definition.
Services.Common.Status “ON”| Status of Common service — active or inactive
K‘OFFS’
Services.IM “YES” | Whether or not IM service is subscribed
GLNO’?
Services.IM.PSE Domain PSE of IM service. See 6.3.1 for Domain definition.
Services.IM.Status “ON” | Status of IM service — active or inactive
GLOFF,’
Services.Presence “YES” | Whether or not Presence service is subscribed
K‘NO”
Services.Presence.PSE Domain PSE of Presence service. See 6.3.1 for Domain
definition.
Services.Presence.Status “ON” | Status of Presence service — active or inactive
GLOFF,’
Services.Group “YES” | Whether or not Group service is subscribed
K‘NO”
Services.Group.PSE Domain PSE of Group service. See 6.3.1 for Domain
definition.
Services.Group.Status “ON”| Status of Group service — active or inactive
K‘OFFS’

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 52 (129)

Services.Content “YES” | Whether or not Content service is subscribed
K‘NO”
Services.Content.PSE Domain PSE of Content service. See 6.3.1 for Domain
definition.
Services.Content.Status “ON” | Status of Content service — active or inactive
GQOFF,’
Terminal. Delivery “PUSH” | Preferred message delivery method in client
“NOTIFY”
Terminal.Content.type MIME {, Supported MIME types in client. See RFC 2045,
MIME } RFC 2046 and WAP Forum for standard MIME.
Terminal. Content.encoding encoding {, Supported transfer encoding in client. See RFC
encoding } 2045 for standard “transfer-encoding”.
Terminal.Content.length Integer in Supported message size in client for “PUSH”
Byte
Terminal.Content.protocol Protocol {, Supported out-band protocol in client for binary
Protocol } message retrieval.
x.key String A service provider may define new key-values.
These service provider specific keys are prefixed
with x[.].

Table 21. General User Profile

Each piece of user profile information is organized in a “(name, value)” pair. The General User Profile is the list of “(name,
value)” pairs, which are separated with *; ”. An example of a General User Profile is as follows:

(User.Account.Status, ON); (Services.IM, ON); (Services.IM.PSE, im.wv.com); (Services.IM.Status, ON);
(Terminal.Delivery, PUSH); (Terminal.Content.type, text/plain; charset=US-ASCII, text/xml; charset=UTF-8, image/wbmp);
(Terminal.Content.encoding, BASE64); (Terminal.Content.length, 256); (Terminal.Content.protocol, HTTP, SIP, RTP,
RTSP)); (x.MaxNumberOfConatctLists, 100)

11.2 Primitives
11.2.1 The “GetUserProfileRequest” Primitive

The GetUserProfileRequest primitive is issued to discover the available user profile information.

Information Element Req Type Description
Message-Type M GetUserProfileRequest Message identifier
Meta-Information M Structure of Meta- The necessary meta-information in

information a service request defined in 8.1.
User-ID-List M Structure Identifies the users whose User
Profiles are requested. If it is
empty, all users’ User Profiles are
requested.

Table 22. Information elements in GetUserProfileRequest Primitive

11.2.2 The “UserProfile” Primitive

The UserProfile primitive is issued from the provider server to provide the user profile information.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 53 (129)

Information Element | Req Type Description
Message-Type M UserProfile Message identifier
Status-Info M Structure of Status- | The status information (see 8.2).
Primitive
User-Profile-List M Structure of User- A list of User Profiles. Each User profile
Profile contains User-ID and a list of (name, value)
pairs.

Table 23. Information elements in UserProfile Primitive

11.2.3 The “UpdateUserProfileRequest” Primitive

The UpdateUserProfileRequest primitive is issued to update the user profile information.

Information Req Type Description
Element
Message-Type M UpdateUserProfileRequest Message identifier
Meta-Information M Structure of Meta-Information The meta-information (see 8.1).
Updated-User- M Structure of User-Profile A list of User Profiles. Each User
Profile-List profile contains User-ID and a list
of (name, value) pairs.

Table 24. Information elements in UpdateUserProfileRequest Primitive

11.3 Transactions
11.3.1 The “GetUserProfile” Transaction

Requestor Provider
Server Server

GetUserProfileRequest

\ 4

UserProfile

A

Figure 19. The “GetUserProfile” Transaction

SSP supports the exchange of user profile information among the WV domains including the list of services to which a user
subscribes, the service status (active / inactive), privacy status with regard to network service capabilities (e.g. user location,
user interaction), terminal capabilities etc. The user profile information is discovered through a “GetUserProfile”
transaction.

The GetUserProfileRequest request is issued from the requestor server to request the user profile information from
the provider server. The provider server sends the UserProfile response to provide the requestor server with the user
profile information.

Primitive Direction
GetUserProfileRequest Requestor Server — Provider Server
UserProfile Requestor Server < Provider Server

Table 25. Primitive Directions for GetUserProfile Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 54 (129)

11.3.2 The “UpdateUserProfile” Transaction

Requestor Provider
Server Server

UpdateUserProfile

»
L

Status

A

Figure 20. The “UpdateUserProfile” Transaction

The requestor server may update the user profile information in the provider server through an “UpdateUserProfile”
Transaction.

The requestor server sends an UpdateUserProfile request to the provider server and provides the updated user profile
information. After the provider server finishes processing the request, it sends a Status response to the requestor server and
confirms that it has updated the user profile information.

Primitive Direction
UpdateUserProfile Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 26. Primitive Directions for UpdateUserProfile Transaction

11.4 Status Code

e Unknown user (531)

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 55 (129)

12.Service Relay — Common IMPS Features

SSP supports the service relay among the WV servers and the SSP Gateways including the functional relay of the common
IMPS features, contact list, presence features, IM features, group features and shared content features that are defined in the
“Features and Functions” document.

12.1 Overview

This chapter focuses on the functional relay of common IMPS features. Because of the server interoperation nature, the SSP
has its own requirement on meta-information and information elements in the primitives at transaction level. The complete
primitives and transaction flows of common IMPS features at SSP semantics level are defined in the following two sections.

Please refer to the CSP document to determine how to relay the common IMPS features from client-server interaction (CSP)
to server-server interoperation (SSP).

12.2 Primitives
12.2.1 The “SearchRequest” Primitive

The SearchRequest primitive allows a user to search for users or groups based on different properties of the user or
group. The user may limit the number of search results retrieved at one time. The user may continue the search and go
through all the results.

The search is performed using a list of one or more Search-Pairs. A Search-Pair consists of a Search-Element and a
Search-String. The Search-Element indicates which property of the user / group shall be searched for the Search-String.
When more than one search pair is specified in the primitive, a logical AND operation is assumed among the different pairs.
Every Search-Element may be present only once within the same search request.

The search result is restricted in the same manner presence information is restricted when requested. If the searching user is
not proactively authorized to see certain presence values for a user included in the search result, that presence value shall not
be included. If the unauthorized presence attribute is part of the search criteria, that user shall not be included in the search
result at all. Users that want to have certain presence attributes searchable should expose them through their default attribute
list.

The result of a user search is always user-ID. Similarly, the result of a group search is always group-ID.

Search-Element for User Search (the result is always user-ID) is listed as follows:

Search-Element Description
USER _ID The Search-String is a substring of a user-ID.
USER FIRST NAME The Search-String is a substring of a user’s firstname.
USER LAST NAME The Search-String is a substring of a user’s lastname.
USER_EMAIL ADDRESS The Search-String is a substring of a user’s e-mail address.
USER_ALIAS The Search-String is a substring of a user’s alias.
USER _MOBILE NUMBER The Search-String is a mobile number. [E.164].
USER_ONLINE STATUS The Search-String is an online status value.

Search-Element for Group Search (the result is always group-ID) is listed as follows:

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 56 (129)

Search-Element

Description

GROUP_ID

The Search-String is a substring of a group-ID.

GROUP_NAME

properties).

The Search-String is a substring of a group’s name (part of group

GROUP_TOPIC

properties).

The Search-String is a substring of a group’s topic (part of group

GROUP_USER_ID_JOINED

The Search-String is a substring of a user-ID.

GROUP_USER_ID_OWNER

The Search-String is a user-ID. Search result contains the list of
groups owned by the specified user.

GROUP_USER_ID_AUTOJOIN

The Search-String is a user-ID. Search result contains the list of
groups that have the AutoJoin property set to “T” for the specified

user.

Information Element Req Type Description

Message-Type M SearchRequest Message identifier

Meta-Information M Structure of Meta- The meta-information (see 8.1).

Information

Search-Pair-List C Structure Search criteria in terms of properties. It is
present only in the 1* search request.

Search-Limit C Integer Indicates the number of maximum search
results that can be received at one time. It is
Present only in the 1¥ search request.

Search-ID C String Uniquely identifies a search transaction.
The server assigns this ID when the first
search is performed, thus it is not present in
the 1% search request.

Search-Index C Integer Indicates that the results shall be sent
starting from this particular index. It is
present only when the search is continued.

Table 27. Information elements in SearchRequest Primitive

12.2.2 The “SearchResponse” Primitive

Information Req Type Description
Element
Message-Type M SearchResponse Message identifier
Status-Info M Structure of Status- The status information (see 8.2).
Primitive

Search-ID c String Uniquely identifies a search transaction. The
server assigns this ID when the 1* search is
performed successfully.

Search-Findings M Integer Indicates the number of current findings.

Completed M Boolean Indicates if the client can expect new results.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 57 (129)

Information Req Type Description
Element
‘No’ if server may provide new results (still
searching), ‘Yes’ if new results will not be
provided.

Search-Index M Integer Indicates the index of the last result. This
provides the user with the information of where
to continue the next search.

Search-Results C Structure Search results.

Table 28. Information elements in SearchResponse Primitive

12.2.3 The “StopSearchRequest” Primitive

The StopSearchRequest primitive allows a user in the requestor server to indicate to the provider server that the search
and / or its result is not needed any more from a previously issued search request.

Information Element | Req Type Description

Message-Type M StopSearchRequest Message identifier

Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information

Search-ID M String Identifies the search to be invalidated.

Table 29. Information elements in StopSearchRequest Primitive

12.2.4 The “InviteRequest” Primitive

The InviteRequest primitive allows the user in the requestor server to invite a list of other users to join a discussion /
chat group, or to exchange messages, or to share presence information, or to share content.

The invited user may be a single user identified by its User-ID or Screen-Name. A list of users may be invited using a
Contact-List-ID or Group-ID. If Invite-Type is GM, the Invited-User is the group ID.

Information Element Req Type Description
Message-Type M InviteRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information
Invite-ID M String Identifies this invitation.
Invite-Type M Enum {“GR”, “IM”, Inviting for Group/chat (GR), Messaging
“PR”, “SC”,“GM”} (IM), Presence (PR), Content (SC)) or
Group Membership (GM).
Inviting-User M Structure Identifies the requesting user who sends
the invitation (User-ID and / or Screen-
Name)
Invited-User M Structure Identifies the user(s) to be invited (User-
ID and / or Screen-Name, or Contact-
List-ID). If Invite-Type is GM, identifies
the group ID.

© 2005 Open Mobile Alliance Ltd. All

Rights Reserved.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 58 (129)

Information Element Req Type Description

Invite-Group-1D C String Identifies the group. It is mandatory if
InviteGroup (GR) or Group Membership
(GM). Otherwise, not present.

Invite-Presence-Attribute- | CO Structure Identifies the Presence Attributes that the

List inviter wants to share with the invitees. It
is optional if InvitePresence (PR).
Otherwise, not present.

Invite-Content-ID-List CO Structure Identifies the related shared content as a
list of URLs. It is optional if
InviteContent (SC). Otherwise, not
present.

Invite-Reason O String Textual description of the invitation.

Validity O Integer in seconds Indicates the interval over which the
invitation is valid.

12.2.5 The “InviteResponse” Primitive

Table 30. Information elements in InviteRequest Primitive

The InviteResponse primitive allows the provider server to return the result of the invitation to the requestor server,

representing the inviting user.

Primitive

Information Element | Req Type Description
Message-Type M InviteResponse Message identifier.
Status-Info M Structure of Status- The status information (see 8.2).

Invite-ID M String Identifies this invitation.

Inviting-User M Structure Identifies the requesting user who sends the
invitation (User-ID and / or Screen-Name)

Invite-Acceptance M Boolean Indicates if the user accepts the invitation or
not.

Responding-User M Structure Identifies the responding invited user (User-
ID and / or Screen-Name). If Invite-Type
was GM, identifies the group ID.

Invite-Response (0] String Textual description, why the invited user

accepted/rejected the invitation.

Table 31. Information elements in InviteResponse Primitive

Each tuple { Invite-Acceptance, Responding-User, Invite-Response } represents the response from one invitee. There may be
multiple tuples { Invite-Acceptance, Responding-User, Invite-Response } in one “InviteResponse” primitive if the provider
server is able to collect the response from the invited users in a reasonable time and combine the multiple responses in one
primitive in order to reduce the traffic overhead between the servers.

12.2.6 The “InviteUserRequest” Primitive

The InviteUserRequest primitive allows the provider server to invite the user(s) in the requestor server to join a
discussion / chat group, or to exchange messages, or to share presence information, or to share content or to become a group

member.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 59 (129)

Information Element Req Type Description
Message-Type M InviteUserRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information
Invite-ID M String Identifies this invitation.
Invite-Type M Enum { “GR”, “IM”, Inviting for Group/chat (GR), Messaging
“PR”, “SC”, “GM” } (IM), Presence (PR), Content (SC) or

Group Membership (GM).

Inviting-User M Structure Identifies the requesting user who sends
the invitation (User-ID and / or Screen-
Name)

Invited-User M Structure Identifies the user(s) to be invited (User-
ID and / or Screen-Name, or List-of-
User-IDs)

Invite-Group-ID C String Identifies the group. It is mandatory if
InviteGroup (GR) or Group Membership
(GM). Otherwise, not present.

Invite-Presence-Attribute- | CO Structure Identifies the Presence Attributes that the

List inviter wants to share with the invitees. It
is optional if InvitePresence (PR).
Otherwise, not present.

Invite-Content-ID-List CO Structure Identifies the related shared content as a
list of URLSs. It is optional if
InviteContent (SC). Otherwise, not
present.

Invite-Reason O String Textual description of the invitation.

Validity (0] Integer in seconds Indicates the interval in which the
invitation is valid.

Table 32. Information elements in InviteUserRequest Primitive

12.2.7 The “InviteUserResponse” Primitive

The InviteUserResponse primitive allows the requestor server, representing the invited users, to return the result of the

invitation to the provider server.

Information Req Type Description
Element
Message-Type M InviteUserResponse Message identifier
Status-Info M Structure of Status- The status information (see 8.2).
Primitive
Invite-ID M String Identifies this invitation.
Inviting-User M Structure Identifies the requesting user who sends
the invitation (User-ID, Screen-Name)

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 60 (129)

Information Req Type Description
Element
Invite-Acceptance M Boolean Indicates if the user accepts the invitation
or not.
Responding-User M Structure Identifies the responding invited user

(User-ID and / or Screen-Name). If
Invite-Type was GM, identifies the group
ID.

Invite-Response O String Textual description, why the invited user
accepted/rejected the invitation.

Table 33. Information elements in InviteUserResponse Primitive

Each tuple { Invite-Acceptance, Responding-User, Invite-Response } represents the response from one invitee. There may be
multiple tuples { Invite-Acceptance, Responding-User, Invite-Response } in one “InviteUserResponse” primitive if the
requestor server, which represents the invited users, is able to collect the response from the invited users in a reasonable time
and combine the multiple responses in one primitive in order to reduce the traffic overhead between the servers.

12.2.8 The “CancellnviteRequest”’ Primitive

The CancelInviteRequest primitive allows the user in the requestor server to cancel its previous invitation.

Information Element Req Type Description
Message-Type M CancellnviteRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).

Information
Invite-ID M String Identifies the invitation.
Canceling-User M Structure Identifies the requesting user who

cancels the invitation (User-ID and / or
Screen-Name)

Canceled-User M Structure Identifies the user(s) to whom the
invitation will be canceled (User-ID
and / or Screen-Name, or Contact-List-

ID)
Canceled-Content-ID- C Structure Identifies the related shared content as
List a list of URLs which will be canceled.
Cancel-Reason 0 String Textual description of the cancel.

Table 34. Information elements in CancellnviteRequest Primitive

12.2.9 The “CancellnviteUserRequest” Primitive

The CancelInviteUserRequest primitive allows the provider server to cancel its previous invitation to the users in the
requestor server.

Information Element Req Type Description
Message-Type M CancellnviteUserRequ | Message identifier
est
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 61 (129)

Information Element Req Type Description

Invite-ID M String Identifies the invitation.

Canceling-User M Structure Identifies the requesting user who
cancels the invitation (User-ID and / or
Screen-Name)

Canceled-User C Structure Identifies the user(s) to whom the
invitation will be canceled (User-ID
and / or Screen-Name, or List-of-User-
IDs). Not present if the invitation was
to a group membership

Canceled-Content-ID-List C Structure Identifies the related shared content as
a list of URLs which will be canceled.

Cancel-Reason 0] String Textual description of the cancel.

Table 35. Information elements in CancellnviteUserRequest Primitive

12.2.10 The “VerifyIDRequest” Primitive

The VerfiyIDRequest primitive allows the requestor server to verify that userid(s) are valid in the provider server.

Information Element Req Type Description
Message-Type M VeifyIDRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).

Information
WV-ID-List M Structure The list contains the WV-ID’sto be
verified, and optionally the time
when the WV ID was created

Table 36. Information elements in VerfifyIDRequest Primitive

12.2.11 The “VerifyIDResponse” Primitive

The VerifyIDResponse primitive allows the provider server to return the result of the verification, and the list of valid

WV IDs along with the time when the valid WV ID was created.

Information Element | Req Type Description
Message-Type M VerifyUseridResponse Message identifier.
Status-Info M Structure of Status- The status information (see 8.2).
Primitive
WV-ID-List M Structure The list contains the valid WV Ids along
with the time when the valid WV ID was
created.

Table 37. Information elements in VerifyIDResponse Primitive

12.2.12 The “GetReactiveAuthStatusRequest” Primitive

The “GetReactiveAuthStatusRequest primitive is used for the requestor server to retrieve the current status of reactive

authorizations.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 62 (129)

Information Element Req | Type Description
Message-Type M GetReactiveAuthStatus | Message identifier
Request
Meta-Information M Structure of Meta- The meta-information (see 5.1).
Information
User-ID-List (0] Structure Identifies the user(s) to retrieve the
reactive authorization status for.

Table 38. Information elements in Cancel AuthRequest Primitive

12.2.13 The “GetReactiveAuthStatusResponse” Primitive

The “GetReactiveAuthStatusResponseprimitive is used for the provider server to send the current reactive authorization

status to the requestor server.

Information Element Req | Type Description
Message-Type M GetReactiveAuthStatus | Message identifier
Response
Meta-Information M Structure of Meta- The meta-information (see 5.1).
Information
Reactive AuthStatus- M Structure List of users and presence attributes and
List corresponding state of the reactive
authorization function.

Table 39. Information elements in CancelAuthRequest Primitive

12.3 Transactions

12.3.1 The “GeneralSearch” Transaction

Requestor Provider
Server Server

SearchRequest (1st)

SearchResponse

A

SearchRequest (continued)

\ 4

SearchResponse

A

Figure 21. The “GeneralSearch” Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 63 (129)

The requestor server sends the SearchRequest message to the provider server including the Search-Pair-List, the
Search-Online-Status (T-Online, F-Offline, N/A-both), the type of the search and the Search-Limit (maximum number of
results at a time). The provider server responds with the SearchResponse message, which includes the Status of the
search. If the search is successful, it includes the Search-ID, the Search-Index (a continuation index to indicate where the
search should be continued), the Search-Findings (the number of items found that match the criteria so far), and the Search-
Results (the actual data).

The requestor server may continue the search. In this case the SearchRequest message includes only the Search-ID and
the Search-Index. The provider server responds with the SearchResponse, but the message includes only the Result, the
Search-Index, the Search-Findings and the Search-Results.

The requestor server may modify the Search-Index value, so that the search may be continued at a different place. The
Search-Index is valid until a new search is performed or the session ends (a previous search is invalidated when a new search
is started).

Primitive Direction
SearchRequest Requestor Server — Provider Server
SearchResponse Requestor Server <— Provider Server

Table 40. Primitive Directions for GeneralSearch Transaction

12.3.2 The “StopSearch” Transaction

Requestor Provider
Server Server
StopSearchRequest
g
Status
<

Figure 22. The “StopSearch” Transaction

The “StopSearch” transaction allows the requestor server to indicate to the provider server that the search and / or the results
are not needed from a previously issued search request. The requestor server sends the StopSearchRequest message to
the provider server including the Search-ID. The provider server invalidates the indicated search, and replies with a Status
message. The invalidated Search-ID cannot be used after invalidation.

Primitive Direction
StopSearchRequest Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 41. Primitive Directions for StopSearch Transaction

12.3.3 The “Invitation” Transaction

A user may invite other user(s) to join a discussion / chat group, or to exchange messages, or to share presence values list, or
to share content.

There are two service models with corresponding transaction flows.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 64 (129)

12.3.3.1 Basic Invitation transaction

Requestor Provider Invited
Inviting Server Client
. Server 1
Client
InviteRequest/CSP
Status/CSP InviteRequest
== - InviteUserRequest/CSP
Status
- —————————— —»
<« _ _StatusiCSP_
InviteUserResponse/CSP
< InviteResponse _ Status/CSP_ o
InviteResponse/CSP
- — — — —— —— — Status >
| _ _Staws/CSP_ _

Figure 23. The “Basic Invitation” Transaction

The requestor server 1 is the Home Domain of the inviting user, the provider server is the Home Domain of the invited user.

Primitive Direction
InviteRequest Requestor Server 1 — Provider Server
Status Requestor Server 1 < Provider Server
InviteResponse Requestor Server 1 «— Provider Server
Status Requestor Server | — Provider Server

Table 42. Primitive Directions for Basic Invitation Transaction

12.3.3.2 Complementary Invitation transaction

Inviting Requestor Provider Requestor Invited
Client Server 1 Server Server 2 Client
InviteRequest/CSP
_________ .>
InviteRequest
< StAus/CSP _ -
< Status InviteUserRequest -
InviteUserRequest/CSP
< Status | __ _ _ _______ >
Status/CSP
- —————————— — -
InviteUserResponse/CSP
InviteUserResponse
- ___gtzﬂuﬁl(;SB____»
InviteResponse
< Status >
InviteResponse/CSP Status
*———————
| _ _Status/CSP _ |

Figure 24. The “Complementary Invitation” Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 65 (129)

In this service model the requestor server 1 is the Home Domain of the inviting user, the provider server is the PSE of the
invited user in another Domain, and the requestor server 2 is the Home Domain of the invited user. The transaction flow is as
follows.

Primitive Direction
InviteRequest Requestor Server 1 — Provider Server
Status Requestor Server 1 <— Provider Server
InviteUserRequest Provider Server — Requestor Server 2
Status Provider Server <~ Requestor Server 2
InviteUserResponse Provider Server «— Requestor Server 2
Status Provider Server — Requestor Server 2
InviteResponse Requestor Server 1 <— Provider Server
Status Requestor Server 1 — Provider Server

Table 43. Primitive Directions for Complementary Invitation transaction

The general description of the transactions

The requestor server 1, which represents the inviting user, sends the provider server the InviteRequest message with the
ID of the invitation, the invitation type, the inviting User-ID and/or Screen-Name, the list of user(s) to be invited specified by
User-1Ds and/or Screen-Names, the ID of the subject, and optionally the reason for the invitation (a short text).

The provider server responds to the requestor server 1 with a Status message. The provider server also sends
InviteUserRequest message to every requestor server 2, which represents one or several of the invited users. The
InviteUserRequest message contains the ID of the invitation, the invitation type, the inviting User-ID and/or Screen-
Name, the list of user(s) to be invited specified by User-IDs and/or Screen-Names, the ID of the subject, and optionally the
reason for the invitation (a short text).

Each requestor server 2 responds to the provider server with a Status message.

The invited user may accept or reject the invitation, and the requestor server 2, which represents the invited users, responds to
the provider server with the InviteUserResponse message with the ID of the invitation, the acceptance indicator, the
User-ID and/or Screen-Name of the responding invited user, and optionally the short response text.

The provider server responds to the requestor server 2 with a Status message. The provider server will send the
InviteResponse message to the requestor server 1, which represents the inviting user. The InviteResponse message
contains the ID of the invitation, the acceptance indicator, the User-ID and/or Screen-Name of the responding invited user,
and optionally the short response text.

The requestor server 1 responds to the provider server with a Status message.

Each tuple { Invite-Acceptance, Responding-User, Invite-Response } represents the response from one invitee. There may be
multiple tuples { Invite-Acceptance, Responding-User, Invite-Response } in one InviteUserResponse or
InviteResponse primitive if the requestor server 2 or the provider server is able to collect the responses from the invited
users in a reasonable time and combine the multiple responses in one primitive in order to reduce the traffic overhead
between the servers.

While in general there is no mandatory requirement about how an invited user shall act according to the acceptance indicator
within its response in the scope of this function, it is recommended that the invited user should act consistently in accordance
with its response.

The subject of the invitation may be a group, messaging, a shared content, or presence. In case of presence the user may
include a list of presence attributes that he/she is willing to share with the other party. Note that there is no actual presence

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 66 (129)

attribute sharing that has been done, the transaction is only informational. Similarly, in case of group, messaging, or shared
content invitations the actual action is not taken, it is up to the user to share presence attributes manually (the invitation is

only informational).

12.3.4 The “Cancellnvitation” Transaction

A user may cancel any previous invitations.

12.3.4.1

Cancellation
sender Client

The requestor server 1 is the Home Domain of the invitation canceling user, the provider server is the Home Domain of the

CancellnviteRequest/CSP

Requestor
Server 1

CancellnviteRequest

Basic Cancel Invitation transaction

Provider
Server

Status

>

-

CancellnviteUserRequest/CSP

Cancellation
receiver Client

Figure 25. The “Basic Cancellnvitation” Transaction

invitation cancellation receiver user.

Primitive

Direction

CancellnviteRequest

Requestor Server 1 — Provider Server

Status

Requestor Server 1 < Provider Server

Table 44. Primitive Directions for Basic Cancellnvitation Transaction

12.3.4.2 Complementary Cancel Invitation transaction
Cancellation Requestor Provider Requestor Cancellation
sender Client Server 1 Server Server 2 receiver Client
CancellnviteRequest/CSP
——————————— >
CancellnviteRequest
< — Status/CSP_ _ _ >
CancellnviteUserRequest
< Status >
CancellnviteUserRequest/CSP
< Status | T >
Status/CSP
- —————————— —

Figure 26. The “Complementary Cancellnvitation” Transaction

In this service model the requestor server 1 is the Home Domain of the invitation canceling user, the provider server is the
PSE of the invitation cancellation recipient in another Domain, and the requestor server 2 is the Home Domain of the
invitation cancellation recipient. The transaction flow is as follows.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 67 (129)

Primitive Direction
CancellnviteRequest Requestor Server 1 — Provider Server
Status Requestor Server 1 <— Provider Server
CancellnviteUserRequest Provider Server — Requestor Server 2
Status Provider Server < Requestor Server 2

Table 45. Primitive Directions for Complementary Cancellnvitation Transaction

The general description of the transactions

The requestor server 1, which represents the inviting user, sends the provider server the CancelnviteRequest message
with the ID of the invitation, the inviting User-ID and/or Screen-Name, the list of user(s) to be notified about the cancellation
specified by User-IDs and/or Screen-Names, and optionally the reason for the cancellation (a short text).

The provider server responds to the requestor server 1 with a Status message. The provider server also sends
CancelnviteUserRequest message to every requestor server 2, which represents one or several of the invited users.
The CancelnviteUserRequest message contains the ID of the invitation, the inviting User-ID and/or Screen-Name,
the list of user(s) to be notified about the cancellation specified by User-IDs and/or Screen-Names, and optionally the reason
for the invitation (a short text).

The requestor server 2, which represents the canceled users, responds to the provider server with the Status message.

Note that the “Cancellnvitation” transaction makes sense only for the scope of presence sharing and content sharing
invitations.

12.3.5 The “VerifylD” Transaction

Figure 27. The “VerifyWVID” Transaction

The “VerifyWVIDUserid” transaction is used by the requestor server to verify that a list of WV IDsUser-ID is in use are
valid at the provider server, i.e. the Home Domain of the WV User-IDs. The transaction is used before the WV IDUser-ID is
stored in the requestor sever to ensure that all locally stored WV IDsUser-ID’s are valid. The VerifyWVIDUserid response
contains the result of the verification, and a list of WV IDs along withsubset of User-ID’(s) in use and the time when the
valid WV User-ID was created. The time information is used to verify that the locally stored WV User-ID belongs to the
same end-user on both the requestor and provider server or if it has been recycled on the provider side and given to a new
end-user. If the time is not present in the request it is assumed that the requestor server just want to verify if the WV that the
User-1Ds isare validin use.

Primitive Direction
VerifyIDRequest Requestor Server — Provider Server
VerifyIDResponse Requestor Server <— Provider Server

Table 46. Primitive Directions for the VerifyUserid Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 68 (129)

12.3.9 The “GetReactiveAuthStatus” Transaction

Requestor Provider
Server Server

GetReactiveAuthStatusRequest

Y

GetReactiveAuthStatusResponse

i

Figure 28. The “GetReactiveAuthStatus” Transaction

The purpose of the “GetReactiveAuthStatus* transaction is for the requestor server to retrieve the status of the reactive
authorization function for a particular user.

The requestor server sends a “GetReactiveAuthStatusRequest” to the provider server for the reactive authorization status of
the publishing users. A “GetReactiveAuthStatusResponse” message from the provider server will contain the current status of
the reactive authorization function.

Primitive Direction

GetReactiveAuthStatusRequest Requestor Server — Provider Server

GetReactiveAuthStatusResponse | Requestor Server <— Provider Server

Table 47. Primitive Directions for GetReactiveAuthStatus Transaction

12.4 Status Code

12.4.1 “GeneralSearch” Transaction
* Unable to parse criteria. (Invalid Search-Element) (402)
U Initial search request was not sent (Invalid Search-ID) (424).
* Invalid Search-Index (out of range) (425)

e Search timeout (in <case of continued search the subsequent request
primitive is late). (535)

. Server search limit is exceeded (610)
. Too many hits (536)

. Too broad search criteria (537)

12.4.2 “StopSearch” Transaction
U Service Not Supported (405)

. Invalid Search-ID (424)

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 69 (129)

12.4.3 “Invitation” Transaction

Invalid invitation type (402).

Unknown user (ID or screen-name) (531).
Group does not exist (800).

Invalid invite-ID. (423)

Delivery to recipient not available. (410)

Delivery to recipient domain not available.

Recipient unknown (Contact list). (700)

Invalid or unsupported presence value. (751)

12.4.4 *“Cancellnvitation” Transaction

Invalid invitation type (402).
Invalid invitation ID (423).
Unknown user (ID or screen-name) (531).

Delivery to recipient not available. (410)

Delivery to recipient domain not available.

Recipient unknown (Contact list). (700)

12.4.5 VerifyWVID” Transaction

Domain not found (404).

Service Not Supported (405)
Unknown user (531).

Contact list does not exist (700).
Group does not exist (800).

General address error (901)

(516)

(516)

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 70 (129)

13.Service Relay — Contact List Features

13.1 Overview

A “contact list* is a list created and maintained by a User so that the User may send messages to the “contact list“ as a
recipient. The message will be delivered to every member in the particular “contact list’. However, except the owner User,
the other members of the “contact list” do not have any knowledge about the “contact list”. Nor do the members of the list
conduct any group functions.

In concept, the “contact list* is a special case and subset of Private Group, and is also a special case of Restricted Group. In
practice, the “contact list* has two cases:

Address book — the “contact list“ contains a list of addresses, nicknames, and other relevant information of
family members, friends, colleagues or other frequently contacted persons.

Presence — the “contact list* is closely tied to the presence service. It allows proactive presence authorization
(the people on the list can get these presence attributes), and presence update (presence attributes of the
people on the list).

A user may have any number of contact lists, thus the contact lists has their own IDs. The users do not know about (and
cannot access) each other’s contact list(s).

There are two properties for Contact List:

Display-Name: a free text string given by user that can be presented in the user interface of the client.

Default: a Boolean set by user that indicates that the particular contact list is the default contact list.

When the user creates his/her first contact list, the server automatically sets that contact list as the default. The server may
also create the first list automatically.

When the user has more than one contact lists in the system, the user may set any of his/her contact lists as the default contact
list. When the user sets “Default” property of a contact list to “True”, the “Default” property of the previously default contact
list must be automatically set to “False” by the server.

Watchers list is a system defined contact list with the functionality limited to holding users that have subscribed to presence
information including the subscribed attributes.

All users that have subscribed to presence information are present in the Watchers list, i.e. a user that is present in a contact
list and has subscribed to one or more presence attributes is always present in the watchers list. A user whose reactive
authorization request is accepted shall also be present in the watchers list. If the user does not indicate specific attributes in
his reactive authorization request, the Default Public Attribute List will be used for this user. Otherwise, the specific attribute
list shall be associated with the subscriber.

The server shall maintain one Watcher List for each user.

This chapter focuses on the functional relay of Contact List features. Because of the server interoperation nature, the SSP has
its own requirements on meta-information and information elements in the primitives at the transaction level. The complete
primitives and transaction flows of Contact List features at SSP semantics level have been defined in the following two
sections.

Please refer to the CSP document understand how to relay the Contact List features from client-server interaction (CSP) to
server-server interoperation (SSP).

The transactions below belong to the complementary service.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 71 (129)

13.2 Primitives
13.2.1 The “CreateContactListRequest’ Primitive

The CreateContactListRequest primitive is used to create a contact list.

In addition to the “Contact-List-ID” which identifies the contact list, the CreateContactListRequest primitive
contains the initial properties (Display-Name, Default) and a “User-List” which identifies the initial users to be added to the
contact list (User-ID, Nickname).

Information Element Req Type Description
Message-Type M CreateContactListReq | Message identifier
uest
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information
Contact-List-ID M String Identifies the contact list.
Contact-List-Props O Structure The initial properties of the contact list
(Display-Name, Default).
User-List O Structure Identifies the initial users to be added to
the contact list (User-ID, Nickname).

Table 48. Information elements in CreateContactListRequest Primitive

13.2.2 The “DeleteContactListRequest” Primitive

The DeleteContactListRequest primitive is used to delete the contact list(s).

Information Element Req Type Description
Message-Type M DeleteContactListReq | Message identifier
uest
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information
Contact-List-ID-List M Structure Identifies the contact list(s).

Table 49. Information elements in DeleteContactListRequest Primitive

13.2.3 The “GetContactListRequest” Primitive

The GetContactListRequest primitive allows a user in the requestor server to retrieve the list of all Contact-List-IDs.

Information Element Req Type Description
Message-Type M GetContactListRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).

Information

Table 50. Information elements in GetContactListRequest Primitive

13.2.4 The “GetContactListResponse” Primitive

The GetContactListResponse primitive returns a list of all Contact-List-IDs.

Information Element Req Type Description
Message-Type M GetContactListResponse Message identifier

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 72 (129)

Status-Info M Structure of Status-Primitive The status information (see 8.2).
Contact-List-ID-List C Structure The list of the Contact-List-IDs.
Default-C-List-ID C String Identifies the default contact list.

Table 51. Information elements in GetContactListResponse Primitive

13.2.5 The “GetListMemberRequest” Primitive

The GetListMemberRequest primitive is used to retrieve the all members of a contact list.

Information Element Req Type Description
Message-Type M GetListMemberRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).

Information
Contact-List-ID M String Identifies the contact list.

Table 52. Information elements in GetListMemberRequest Primitive

13.2.6 The “AddListMemberRequest” Primitive

The AddListMemberRequest primitive is used to add the members to a contact list.

Information Element Req Type Description

Message-Type M AddListMemberReque | Message identifier
st

Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information

Contact-List-ID M String Identifies the contact list.

User-List M Structure Identifies the users to be added to the

contact list (User-ID, Nickname).

Table 53. Information elements in AddListMemberRequest Primitive

13.2.7 The “RemovelistMemberRequest’ Primitive

The RemoveListMemberRequest primitive is used to remove members from the contact list.

Information Element | Req Type Description
Message-Type M RemoveListMemberRe | Message identifier
quest
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information
Contact-List-ID M String Identifies the contact list.
User-List M Structure Identifies the users to be removed from the
contact list (User-ID, Nickname).

Table 54. Information elements in RemoveListMemberRequest Primitive

13.2.8 The “ContactListMemberResponse” Primitive

The ContactListMemberResponse primitive returns a list of all members in the contact list.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Information
Element

Req

Type

Description

Message-Type | M

ContactListMemberResponse

Message identifier

Status-Info M

Structure of Status-Primitive

Status information (see 8.2).

User-List M

Structure

Identifies the users in the contact list
(User-ID, Nickname).

Table 55. Information elements in ContactListMemberResponse Primitive

13.2.9 The “GetListPropsRequest’ Primitive

The GetListPropRequest primitive is used to retrieve the properties of a contact list.

Information Element

Req Type

Description

Message-Type

M GetListPropsRequest

Message identifier

Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information
Contact-List-ID M String Identifies the contact list.

Table 56. Information elements in GetListPropsRequest Primitive

13.2.10 The “SetListPropsRequest” Primitive

The SetListPropRequest primitive is used to set the properties of a contact list.

Information Element Req Type Description
Message-Type M SetListPropsRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).

Information
Contact-List-ID M String Identifies the contact list.
Contact-List-Props M Structure The properties (Display-Name,
Default) to be set.

Table 57. Information elements in SetListPropsRequest Primitive

13.2.11 The “ContactListPropsResponse” Primitive

The ContactListPropsResponse primitive returns a list of all members in a contact list.

Information Req Type Description
Element

Message-Type M ContactListPropsRespons | Message identifier
e

Status-Info M Structure of Status- Status information (see 8.2).
Primitive

Contact-List-Props M Structure The properties of the contact list

(Display-Name, Default).

Table 58. Information elements in ContactListPropsResponse Primitive

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

Page 73 (129)

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 74 (129)

13.2.12 The “CreateAttrListRequest’ Primitive

The CreateAttrListRequest primitive is used to create an attribute list, and attach the attribute list to some contact
list(s) and / or user(s).

Information Element Req Type Description
Message-Type M CreateAttrListRequest | Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information
Presence-Attribute-List M Structure A list of presence attributes.
Default-List M “Yes” | “No” Indicates if the attributes are targeted to

the default attribute list instead of a
separate attribute list.

Contact-List-ID-List C Structure Contact list(s) which the attribute list
should be attached to.

User-ID-List C Structure User(s) which the attribute list should be
attached to.

Table 59. Information elements in CreateAttrListRequest Primitive

13.2.13 The “DeleteAttrListRequest” Primitive

The DeleteAttrListRequest primitive is used to delete an attribute list(s).

Information Element | Req Type Description

Message-Type M DeleteAttrListRequest Message identifier

Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information

Default-List M “Yes” | “No” Indicates if the default attribute list

should be cleared.

Contact-List-ID-List C Structure Identifies the contact list(s) to remove
the attribute list association

User-ID-List C Structure Identifies the user(s) to remove the
attribute list association

Table 60. Information elements in DeleteAttrListRequest Primitive

13.2.14 The “GetAttrListRequest” Primitive

The GeAttrListRequest primitive is used to retrieve the published or subscribed attributes associated with specific
contact list(s) and / or user(s). If the user(s) or contact list(s) are not specified, the response shall include all user-specific and
contact list-specific attributes.

Information Element | Req Type Description
Message-Type M GetAttrListRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information
Default-List M “Yes” | “No” Indicates if the default attribute list should
be retrieved (“YES”) or not.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 75 (129)

Information Element | Req Type Description

Contact-List-ID-List (0] Structure Identifies the contact list(s) to retrieve the
attribute list association

User-ID-List O Structure Identifies the user(s) to retrieve the attribute
list association

Table 61. Information elements in GetAttrListRequest Primitive

13.2.15 The “GetAttrListResponse” Primitive

The GetAttrListResponse primitive returns the presence attributes.

Information Element Req Type Description
Message-Type M GetAttrListResponse Message identifier
Status-Info M Structure of Status- The status information (see 8.2).
Primitive

Attribute-Association-List | O Structure A list of attribute list associations
with the user and / or the contact list.

Default-Association-List | O Structure The list of presence attributes
associated with the default list.

Table 62. Information elements in GetAttrListResponse Primitive

13.3 Transactions

13.3.1 The “CreateContactList” Transaction

Requestor Provider
Server Server

CreateContactListRequest

»
Ll

Status

Figure 29. The “CreateContactList” Transaction

The requestor server sends a CreateContactListRequest to the provider server. The provider server shall create the
contact list and respond with a Status message to the requestor server.

A user is able to create more than one contact list. There may be system specific limitations for the maximum number of lists
per user. After a contact list is created, a user may create an attribute list for the contact list.

Primitive Direction
CreateContactListRequest Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 63. Primitive Directions for CreateContactList Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 76 (129)

13.3.2 The “DeleteContactList” Transaction

Requestor Provider
Server Server

DeleteContactListRequest

Status

Figure 30. The “DeleteContactList” Transaction

The requestor server sends a DeleteContactListRequest to the provider server. The provider server shall delete the
contact lists(s) and respond with a Status. The server should not unsubscribe the members implicitly; if a contact list that
has been subscribed to is deleted, the presence subscriptions should not be cancelled for the particular users.

A user may delete more than one contact list in one transaction.

Primitive Direction
DeleteContactListRequest Requestor Server — Provider Server
Status Requestor Server <— Provider Server

Table 64. Primitive Directions for DeleteContactList Transaction

13.3.3 The “GetContactList” Transaction

Requestor Provider
Server Server
GetContactListRequest

GetContactListResponse

>
)

Figure 31. The “GetContactList” Transaction

The “GetContactList“ transaction allows the requestor server to retrieve the list of all Contact-List-IDs of the user. The
requestor server sends a GetContactListRequest request. The provider server returns a
GetContactListResponse primitive with a list of all Contact-List-ID’s and the default contact list ID of the user.

Primitive Direction
GetContactListRequest Requestor Server — Provider Server
GetContactListResponse Requestor Server < Provider Server

Table 65. Primitive Directions for GetContactList Transaction

13.3.4 The “GetListMember” Transaction

Requestor Provider
Server Server

GetListMemberRequest

ContactListMemberResponse

>
)

Figure 32. The “GetListMember” Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 77 (129)

The “GetListMember” transaction is used to retrieve all members of a contact list. The requestor server sends a
GetListMemberRequest to the provider server. The provider responds to the requestor server with a
ContactListMemberResponse containing the list of all members of the contact list.

Primitive Direction
GetListMemberRequest Requestor Server — Provider Server
ContactListMemberResponse Requestor Server <— Provider Server

Table 66. Primitive Directions for GetListMember Transaction

13.3.5 The “AddListMember” Transaction

Requestor Provider
Server Server

AddListMemberRequest

ContactListMemberResponse

>
)

Figure 33. The “AddListMember” Transaction

The requestor server sends an AddListMemberRequest to the provider server to add one or more members in a contact

list. The provider server shall respond to the requestor server with a ContactListMemberResponse containing the list
of all members of the contact list.

Primitive Direction
AddListMemberRequest Requestor Server — Provider Server
ContactListMemberResponse Requestor Server <— Provider Server

Table 67. Primitive Directions for AddListMember Transaction

13.3.6 The “RemoveListMember” Transaction

Requestor Provider
Server Server

RemoveListMemberRequest

»

ContactListMemberResponse
>
)

Figure 34. The “RemoveListMember” Transaction

The requestor server sends a RemoveListMemberRequest to the provider server. The provider server shall delete the
specified user(s) from the specified contact list, and return a list of all members of the contact list in the
ContactListMemberResponse.

Primitive Direction
RemoveListMemberRequest Requestor Server — Provider Server
ContactListMemberResponse Requestor Server <— Provider Server

Table 68. Primitive Directions for RemoveListMember Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 78 (129)

13.3.7 The “GetListProperties” Transaction

Requestor Provider
Server Server
GetListPropsRequest
)
Ll

ContactListPropsResponse

Figure 35. The “GetListProperties” Transaction

The “GetListProperties” transaction is used to retrieve the properties of a contact list (Display-Name, Default). The
requestor server sends a GetListPropsRequest to the provider server. The provider responds with a
ContactListPropsResponse to the requestor server containing the properties.

Primitive Direction
GetListPropsRequest Requestor Server — Provider Server
ContactListPropsResponse Requestor Server < Provider Server

Table 69. Primitive Directions for GetListProperties Transaction

13.3.8 The “SetListProperties” Transaction

Requestor Provider
Server Server
SetListPropsRequest
)
Ll

ContactListPropsResponse

Figure 36. The “SetListProperties” Transaction

The “SetListProperties” transaction is used to set the properties of a contact list (Display-Name, Default), i.e. to set the
display name, or to set a default contact list. The requestor server sends a SetListPropsRequest to the provider server.
The provider responds with a ContactListPropsResponse to the requestor server containing the new properties.

Primitive Direction
SetListPropsRequest Requestor Server — Provider Server
ContactListPropsResponse Requestor Server <— Provider Server

Table 70. Primitive Directions for SetListProperties Transaction

13.3.9 The “CreateAttributeList” Transaction

Requestor Provider
Server Server
CreateAttrListRequest
>
Status
i

Figure 37. The “CreateAttributeList” Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 79 (129)

A user may create a specific attribute list for a contact list, or a member in a contact list through “CreateAttributeList”
transaction. The requestor server sends a CreateAttrListRequest to the provider server. The provider server shall
create an attribute list, and attach the attribute list to specified contact list(s) and / or user(s).

In order to modify an attribute list, it can be overwritten by creating a new one for the same user or contact list. (It is not
necessary to delete it first.)

Primitive Direction
CreateAttrListRequest Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 71. Primitive Directions for CreateAttributeList Transaction

13.3.10 The “DeleteAttrList” Transaction

Requestor Provider
Server Server
DeleteAttrListRequest
Status
<

Figure 38. The “DeleteAttrList” Transaction

A user may delete an attribute list from a user and / or a contact list through “DeleteAttrList” transaction. The requestor
server sends a DeleteAttrListRequest to the provider server. The provider server shall remove the associations of the
attribute lists with the contact list(s) and / or user(s). If an attribute list is not associated with any contact list or user, it shall
be cleared from the provider server (garbage collection).

Primitive Direction
DeleteAttrListRequest Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 72. Primitive Directions for DeleteAttrList Transaction

13.3.11 The “GetAttrList” Transaction

Requestor Provider
Server Server

GetAttrListRequest

GetAttrListResponse

Figure 39. The “GetAttrList” Transaction

The “GetAttrList“ transaction is used to retrieve the published or subscribed attributes associated with specific contact list(s)
and / or user(s). The provider server returns the requested attributes. If the user(s) or contact list(s) are not specified in the
request, the response shall include all user-specific and contact list-specific attributes.

Primitive Direction
GetAttrListRequest Requestor Server — Provider Server
GetAttrListResponse Requestor Server < Provider Server

Table 73. Primitive Directions for GetAttrList Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 80 (129)

13.4 Status Code

13.4.1 Contact List Transactions
e Unknown user ID (531)
* Contact list does not exist (700)
. Contact list already exists (701)

* Invalid or unsupported contact list property. (752)

13.4.2 Attribute List Transactions

e Unknown user ID (531)

. Contact list does not exist (700).

* Unknown presence attribute (not defined in [PA]) (750).

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 81 (129)

14.Service Relay — Presence Features

14.1 Overview

This chapter focuses on the functional relay of Presence features. Because of the server interoperation nature, the SSP has its
own requirements on meta-information and information elements in the primitives at transaction level. The complete
primitives and transaction flows of Presence features at SSP semantics level have been defined in the following two sections.

Please refer to the CSP document to understand how to relay the Presence features from client-server interaction (CSP) to
server-server interoperation (SSP).

14.2 Primitives

14.2.1 The “SubscribeRequest” Primitive

The SubscribeRequest primitive is used to create subscriptions to obtain notifications about changes of the PRESENCE
INFORMATION and attributes of other PRINCIPALS. The scope of subscription is either a single user or a contact list that
refers to a list of users. If the requesting client subscribes to a contact list, the requesting client may request the server to
automatically subscribe to the presence attributes when a new user is added to this contact list, and automatically unsubscribe
to the presence attributes when the contact list is deleted or when a user is removed from the contact list. Note that the
automatic subscription / unsubscription is merely a characteristics of the subscription / unsubscription itself.

Information Element | Req Type Description

Message-Type M SubscribeRequest Message identifier

Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information

User-ID-List C Structure Identifies the IM users to be subscribed.

Contact-List-ID-List C Structure Identifies the set of users.

Presence-Attribute-List | O Structure A list of presence attributes to which are

subscribed. An empty list or missing list
indicates all presence attributes are desired.
Auto-Subscribe M Boolean “Yes’ means that the automatic subscription
to the presence attributes is enabled when a
new user is added to the contact list, and the
automatic unsubscription to the presence
attributes is also enabled when the contact
list is deleted or when a user is removed
from the contact list. ‘No’ means that the
automatic subscription / unsubscription is
disabled.

Table 74. Information elements in SubscribeRequest Primitive

14.2.2 The “AuthorizationRequest” Primitive

The AuthorizationRequest primitive allows the provider server to perform the reactive authorization with the
requestor server that represents the publishing users.

Information Element | Req Type Description
Message-Type M AuthorizationRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).

Information

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 82 (129)

Information Element | Req Type Description
Authorizing-User-ID M String Identifies the user who can grant the
authorization to the requesting users.
List-of-Subscribing- M Structure A list of elements in which each node
User-ID-and-Presence- specifies the user-ID and the presence
Attribute-List attributes subscribed to. An empty

attribute list indicates that all presence
attributes are desired.

Table 75. Information elements in AuthorizationRequest Primitive

There may be multiple tuples { Authorizing-User-ID, List-of-Subscribing-User-ID-and-Presence-Attribute-List } in one
AuthorizationRequest primitive if the provider server is able to combine the multiple reactive authorizations in one
primitive in order to reduce the traffic overhead between the servers.

14.2.3 The “AuthorizationResponse” Primitive

The AuthorizationResponse primitive returns the authorization result from the responding authorizing users.

There may be multiple tuples { Authorizing-User-ID, Subscribing-User-IDs, Authorization-Result } in one
AuthorizationResponse primitive if the provider server is able to collect the responses from the authorizing users in a
reasonable time and combine the multiple responses in one primitive in order to reduce the traffic overhead between the
servers.

Information Req Type Description
Element
Message-Type M AuthorizationResponse Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information

Authorizing-User-ID | M String Identifies the user who can grant the
authorization to the requesting users.

Subscribing-User-ID- | M Structure Identifies the requesting users who

List want to subscribe

Authorization- M Structure Authorization results from the

Result(s) authorizing user per subscribing user.

Table 76. Information elements in AuthorizationResponse Primitive

14.2.4 The “UnsubscribeRequest” Primitive

The UnsubscribeRequest primitive is used to cancel the current subscription.

Information Element | Req Type Description
Message-Type M UnsubscribeRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information
User-ID-List C Structure Identifies the IM users to be
unsubscribed.
Contact-List-ID-List C Structure Identifies the set of users.

Table 77. Information elements in UnsubscribeRequest Primitive

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 83 (129)

14.2.5 The “PresenceNotification” Primitive

The PresenceNotification primitive allows the provider server to send the notifications about changes of presence
information to the requestor server.

Information Element Req Type Description
Message-Type M PresenceNotification Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information

Subscribing-User-ID-List | M Structure Identifies the users who subscribed to
the presence change.

Presence-Value-List M Structure List of User IDs and corresponding
presence values.

Table 78. Information elements in PresenceNotification Primitive

14.2.6 The “GetWatcherListRequest” Primitive

The GetWatcherListRequest primitive allows the requestor server to retrieve the list of users that subscribed to its
presence information.

Information Req Type Description
Element
Message-Type GetWatcherListRequest Message identifier

M
M Structure of Meta- The meta-information (see 8.1).
Information

Meta-Information

Table 79. Information elements in GetWatcherRequest Primitive

14.2.7 The “GetWatcherListResponse” Primitive

The GetWatcherListResponse primitive allows the provider server to return the subscriber list to the requestor server.

Information Element | Req Type Description
Message-Type M GetWatcherListResponse Message identifier
Status-Info M Structure of Status-Primitive Status information (see 8.2).
User-ID-List C Structure Identifies the subscribers.

Table 80. Information elements in GetWatcherListResponse Primitive

14.2.8 The “GetPresenceRequest” Primitive

The GetPresenceRequest primitive allows the requestor server to retrieve the updated presence information. If the
presence attribute list is missing from the request, the server sends all available presence information.

Information Element | Req Type Description
Message-Type M GetPresenceRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).

Information
User-ID-List C Structure Identifies the publishing users.
Contact-List-ID-List C Structure Identifies the set of publishing users.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 84 (129)

Information Element | Req Type Description
Presence-Attribute-List | O Structure A list of presence attributes to be
retrieved. An empty or missing list
indicates all presence attributes are
desired.

Table 81. Information elements in GetPresenceRequest Primitive

14.2.9 The “GetPresenceResponse” Primitive

The GetPresenceResponse primitive allows the provider server to send the updated presence information to the
requestor server.

Information Element | Req Type Description
Message-Type M GetPresenceResponse Message identifier
Status-Info M Structure of Status- Status information (see 8.2).
Primitive
Presence-Value-List O Structure List of User IDs and corresponding
presence values.

Table 82. Information elements in GetPresenceResponse Primitive

14.2.10 The “UpdatePresenceRequest”’ Primitive

The UpdatePresenceRequest primitive allows the requestor server to update presence information for the publishing
user. Only the updated attributes and their values need to be carried in this primitive, the omitted attributes are not modified.

Information Req Type Description
Element
Message-Type M UpdatePresenceRequest Message identifier
Meta-Information M Structure of Meta-Information The meta-information (see 8.1).
Presence-Value- M Structure A list of presence values to update.
List

Table 83. Information elements in UpdatePresenceRequest Primitive

14.2.11 The “CancelAuthRequest” Primitive

The CancelAuthRequest primitive allows the publishing user to cancel its previous reactive authorizations, and remove
the subscriber from its Watcher List.

Information Element | Req Type Description
Message-Type M CancelAuthRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information
Canceled-User-ID-List | M Structure Identifies the users who will be cancelled
authorization.

Table 84. Information elements in CancelAuthRequest Primitive

14.2.12 The “SuspendRequest” Primitive

The “SuspendRequest primitive is used to suspend presence notifications..

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 85 (129)

Information Element Req | Type Description
Message-Type M SuspendRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 5.1).
Information
User-ID-List C Structure Identifies the IM users whos presence
notifications to be suspended.
Contact-List-ID-List C Structure Identifies the set of users.

Table 82 Information elements in SuspendRequest Primitive

14.3 Transactions
14.3.1 The “Subscribe” Transaction

Requestor Provider
Server Server
SubscribeRequest
>
Status
<

Figure 40. The “Subscribe” Transaction

The subscription for obtaining the notification about the changes of the presence information is accomplished through a
“Subscribe” transaction.

The requestor server sends a SubscribeRequest request to the provider server for subscribing to the notification about
the changes of the presence information of some publishing users. The provider server shall determine whether or not the
reactive authorization is needed based on whether or not the subscribing user is proactively authorized in the publishing
user’s contact list. The provider server shall return a Status message indicating that the provider server has accepted and
processed the request.

The provider server shall perform “ReactiveAuthorization” transactions with the publishing users if the individual reactive
authorizations are needed.

If the subscription succeeds, the requestor server shall receive immediately the current presence information through a
“PresenceNotification” transaction. The requestor server shall also receive the presence changes in the future.

The scope of the subscription is either a single user or a contact list referring to multiple users. The requesting user may
subscribe to only part of the presence information and, correspondingly, the user whose presence information is subscribed
may allow only part of the presence information to be delivered. The subscription may be persistent through different
sessions.

Primitive Direction
SubscribeRequest Requestor Server — Provider Server
Status Requestor Server <— Provider Server

Table 85. Primitive Directions for Subscribe Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 86 (129)

14.3.2 The “ReactiveAuthorization” Transaction

Requestor Provider
Server Server

AuthorizationRequest

Status

\ 4

AuthorizationResponse

Status

Figure 41. The “ReactiveAuthorization” Transaction

If the reactive authorization is needed in the “Subscribe” transaction from the subscribing user, the provider server shall
perform the “ReactiveAuthorization” transactions with the requestor servers that represent the publishing users. The
publishing user may accept or reject the request for authorization to subscribe to its presence information.

There may be multiple tuples { Authorizing-User-ID, List-of-Subscribing-User-ID-and-Presence-Attribute-List } in one
AuthorizationRequest primitive if the provider server is able to combine the multiple reactive authorizations in one
primitive in order to reduce the traffic overhead between the servers.

There may be multiple tuples { Authorizing-User-ID, Subscribing-User-IDs, Authorization-Result } in one
AuthorizationResponse primitive if the provider server is able to collect the response from the authorizing users in a
reasonable time and combine the multiple responses in one primitive in order to reduce the traffic overhead between the
servers.

A new authorization will overwrite the existing one. Any attribute previously granted or denied that is not specified in the
new authorization will not be changed. An exception is an empty list, which will overwrite all authorizations.

This transaction belongs to the complementary service.

Primitive Direction
AuthorizationRequest Requestor Server <— Provider Server
Status Requestor Server — Provider Server
AuthorizationResponse Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 86. Primitive Directions for ReactiveAuthorization Transaction

14.3.3 The “Unsubscribe” Transaction

Requestor Provider
Server Server
UnsubscribeRequest

\ 4

Status

A

Figure 42. The “Unsubscribe” Transaction

The cancellation of a current subscription is accomplished through an “Unsubscribe” transaction. The provider server shall
return a Status message indicating that the provider server has accepted and processed the request.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 87 (129)

Primitive Direction
UnsubscribeRequest Requestor Server — Provider Server
Status Requestor Server <— Provider Server

Table 87. Primitive Directions for Unsubscribe Transaction

14.3.4 The “PresenceNotification” Transaction

Requestor Provider
Server Server
PresenceNotification
)
Status
»

Figure 43. The “PresenceNotification” Transaction

The requestor server is informed of the change of the presence information through a “PresenceNotification” transaction
originated by the provider server.

Primitive Direction
PresenceNotification Requestor Server <— Provider Server
Status Requestor Server — Provider Server

Table 88. Primitive Directions for PresenceNotification Transaction
14.3.5 The “GetWatcherList” Transaction

Requestor Provider
Server Server

GetWatcherListRequest

GetWatcherListResponse

A

Figure 44. The “GetWatcherList” Transaction

The purpose of the GetWatcherList transaction is to allow the requestor server to retrieve the list of users that subscribed
to its presence information.

The requestor server sends a GetWatcherListRequest to the provider server. A GetWatcherListResponse
message from the provider server contains a list of subscribers.

This transaction belongs to the complementary service.

Primitive Direction
GetWatcherListRequest Requestor Server — Provider Server
GetWatcherListResponse Requestor Server <— Provider Server

Table 89. Primitive Directions for GetWatcherList Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 88 (129)

14.3.6 The “GetPresence” Transaction

Requestor Provider
Server Server
GetPresenceRequest
>
GetPresenceResponse
i
)

Figure 45. The “GetPresence” Transaction

The purpose of the GetPresence transaction is to allow the requestor server to retrieve the presence information of other
users.

The requestor server sends a GetPresenceRequest to the provider server for the updated presence information of the
publishing users. A GetPresenceResponse message from the provider server will contain result code(s) and if the
request was successful it will relay the requested PRESENCE INFORMATION.

Primitive Direction
GetPresenceRequest Requestor Server — Provider Server
GetPresenceResponse Requestor Server <— Provider Server

Table 90. Primitive Directions for GetPresence Transaction

14.3.7 The “UpdatePresence” Transaction

Requestor Provider
Server Server

UpdatePresenceRequest

A 4

Status

A

Figure 46. The “UpdatePresence” Transaction

An owner of the presence data or a user with sufficient privileges may update presence attributes and their values through a
“UpdatePresence” transaction.

The requestor server sends an UpdatePresenceRequest message to the provider server. The provider server returns a
Status response.

Primitive Direction
UpdatePresenceRequest Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 91. Primitive Directions for UpdatePresence Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 89 (129)

14.3.8 The “CancelAuthorization” Transaction

Requestor Provider
Server Server
CancelAuthRequest
>
Status
<

Figure 47. The “CancelAuthorization” Transaction

A publishing user may cancel the reactive authorization and subscription, and remove the subscriber from the Watcher List
through “CancelAuthorization” transaction.

Please note that the proactive authorization is cancelled by removing the subscriber from the contact list, or by removing the
associated attribute list, or by making the associated attribute list empty.

The requestor server sends a CancelAuthRequest message to the provider server. The provider server returns aStatus
esponse.

This transaction belongs to the complementary service.

Primitive Direction
CancelAuthRequest Requestor Server — Provider Server
Status Requestor Server <— Provider Server

Table 92. Primitive Directions for CancelAuthorization Transaction

14.3.9 The “Suspend” Transaction

Requestor Provider
Server Server
SuspendRequest

»

Status

Figure 48. The “Suspend” Transaction

The suspension of presence notification to current subscription is accomplished through a Suspend transaction. The
notifications are delivered again when a new Subscribed is preformed. The difference of Suspend and Unsubscribe is that the
user remains in the watcher list when a suspend is requested but is removed with an Unsubscribe. The provider server shall
return a “Status” message indicating that the provider server has accepted and processed the request.

Primitive Direction
SuspendRequest Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 90. Primitive Directions for Suspend Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 90 (129)

14.4 Status Code

14.4.1 “ReactiveAuthorization” Transaction

Unknown presence attribute (not defined in [PA]). (750)

Unknown authorization request or user ID. (531)

14.4.2 “GetPresence” Transaction

Unknown presence attribute (not defined in [PA]) (750)
Unknown user ID. (531)
Contact list does not exist. (700)

14.4.3 “UpdatePresence” Transaction

Unknown presence attribute (not defined in [PA]) (750)

Unknown presence value (not defined in [PA]) (751)

14.4.4 Other Presence Transactions

Unknown user ID (531)

Unknown contact list (700).

Unknown presence attribute (not defined in [PA]). (750)
Unknown presence value (not defined on the [PA]) (751).

Automatic subscription / unsubscription is not supported

(760)

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 91 (129)

15.Service Relay — Instant Messaging Features

15.1 Overview

This chapter focuses on the functional relay of IM features. Because of server interoperation, the SSP has its own
requirements on meta-information and information elements in the primitives at transaction level. The complete primitives
and transaction flows of IM features at SSP semantics level have been defined in the following two sections.

Please refer to the CSP document to understand how to relay the IM features from client-server interaction (CSP) to server-
server interoperation (SSP).

15.2 Primitives
15.2.1 The “SendMessageRequest” Primitive

The SendMessageRequest primitive allows the requesting server to send the instant messages to the users through the
requested server.

Information Element | Req Type Description

Message-Type M SendMessageRequest Message identifier

Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information

Delivery-Report- M “Yes” | “No” Indicates if the user wants delivery report.

Request

Message-Info M Structure Message information data, including {

Message-ID or Message-URI, Content-
type / MIME, encoding, size, sender and
recipients (User-ID and/or Client-ID
and/or Screen-Name and/or Group-ID
and/or Contact-List-ID), date and time,
validity }. Message-ID is NOT present if
the request is relayed from the user’s
Home Domain to its PSE. Otherwise,
Message-ID is present.

Content C String or Binary data The content of the instant message.

Table 93. Information elements in SendMessageRequest Primitive

15.2.2 The “SendMessageResponse” Primitive

The SendMessageResponse primitive allows the requested server to inform the requesting server of the message sending
result.

Information Element | Req Type Description

Message-Type M SendMessageResponse Message identifier

Status-Info M Structure of Status-Primitive | Status information (see 8.2).

Message-1D C String Server generated message id for this
message.

Table 94. Information elements in SendMessageResponse Primitive

15.2.3 The “ForwardMessageRequest” Primitive

The ForwardMessageRequest primitive allows the requesting server to forward the non-retrieved instant messages.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 92 (129)

Information Req Type Description
Element
Message-Type M ForwardMessageRequest Message identifier
Meta-Information M Structure of Meta-Information The meta-information (see 8.1).
Message-1D M String Identifies the message (either
Message-ID or Message-URI).
Recipients M Structure Identifies the users to whom the

message is forwarded (User-ID-List,
Contact-List-ID-List, Screen-Name-
List and Group-ID-List)

Table 95. Information elements in ForwardMessageRequest Primitive

15.2.4 The “NewMessage” Primitive

The NewMessage primitive allows the provider server to deliver the instant message to the users through the requestor
server.

Information Element | Req Type Description
Message-Type M NewMessage Message identifier.
Meta-Information C Structure of Meta- The meta-information (see 8.1). Present if in
Information PushMessage transaction.
Status-Info C Structure of Status- Status information (see 8.2). Present if in
Primitive GetMessage transaction.
Recipient-User-ID- M Structure Identifies the recipients with a list of User-
List ID’s.
Message-Info M Structure Message information data, including {
Message-ID or Message-URI, Content-type /
MIME, encoding, size, sender and recipients
(User-ID and optionally the Client-ID and/or
Screen-Name and/or Group-ID and/or
Contact-List-ID), date and time, validity }.
Content M String or Binary data | Message data.

Table 96. Information elements in NewMessage Primitive

15.2.5 The “MessageDelivered” Primitive

The MessageDelivered primitive allows the requestor server to confirm that the message has been delivered.

Information Req Type Description
Element

Message-Type M MessageDelivered Message identifier.

Meta-Information C Structure of Meta- The meta-information (see 8.1). Present if in
Information GetMessage transaction.

Status-Info C Structure of Status- Status information (see 8.2). Present if in
Primitive PushMessage transaction.

Message-1D M String ID of message that has been delivered

Table 97. Information elements in MessageDelivered Primitive

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

15.2.6 The “MessageNotification” Primitive

The MessageNotification primitive allows the provider server to notify the user of the new messages through the

requestor server.

Information Element | Req Type Description

Message-Type M MessageNotification Message identifier

Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information

Recipient-User-ID- M Structure Identifies the recipients with a list of

List User-ID’s.

Message-Info M Structure Message information data, including {

Message-ID or Message-URI, Content-
type / MIME, encoding, size, sender and
recipients (User-ID and optionally the
Client-ID and/or Screen-Name and/or
Group-ID and/or Contact-List-ID), date
and time, validity }.

Table 98. Information elements in MessageNotification Primitive

15.2.7 The “GetMessageRequest” Primitive

The GetMessageRequest primitive allows the requestor server to get the instant message from the provider server.

Information Element Req Type Description
Message-Type M GetMessageRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).

Information
Message-1D M String ID of message to retrieve

Table 99. Information elements in GetMessageRequest Primitive

15.2.8 The “SetMessageDeliveryMethod” Primitive

The SetMessageDeliveryMethod primitive allows user in the requestor server to set the instant message delivery

method.

Information Element | Req Type Description
Message-Type M SetMessageDelivery | Message identifier
Method
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information
Message-Delivery- M “Notify/Get” | “Push” | Determines the type of message delivery.
Method Push means that complete message is
transferred in the notification. Notify/Get
means that only the message-ID or message-
URI is transferred in the notification the
message is then retrieved using a GetMessage
transaction.
Accepted-Content- (0] Integer Maximum size of message that can be pushed
Length to the user.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

Page 93 (129)

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 94 (129)

Information Element | Req Type Description
Group-ID (0] String Group ID if Delivery method refers to a

group.
Table 100. Information elements in SetMessageDeliveryMethod Primitive

15.2.9 The “GetMessagelistRequest” Primitive

If the provider server offers a space where messages are stored, the user can retrieve an undelivered message list or group
history list. The GetMessageListRequest primitive allows the requestor server to get the stored Message-ID’s or
Message-URI’s so that they can be used in GetMessage or RejectMessage transactions. If “Group-ID” is present, the user
will have the group history list. Otherwise, the user will have the undelivered message list.

Information Req Type Description
Element

Message-Type M GetMessageListRequest Message identifier

Meta-Information M Structure of Meta-Information | The meta-information (see 8.1).

Group-ID C String List the messages to the group(s) (to
retrieve the history).

Message-Count O Integer The maximum number of message-
info structures to be returned.

Table 101. Information elements in GetMessageListRequest Primitive

15.2.10 The “GetMessagelistResponse” Primitive

The GetMessageListResponse primitive allows the provider server to return a list of message information.

Information Req Type Description
Element
Message-Type M GetMessageListRe | Message identifier.
sponse
Status-Info M Structure of Status- | Status information (see 8.2).
Primitive
Message-Info-List M Structure Message information data, including { Message-
ID or Message-URI, Content-type / MIME,
encoding, size, sender and recipients (User-ID
and/or Client-ID and/or Screen-Name and/or
Group-ID and/or Contact-List-ID), date and
time, validity }.

Table 102. Information elements in GetMessageListResponse Primitive

15.2.11 The “RejectMessageRequest” Primitive

The RejectMessageRequest primitive allows the requestor server to remove the unwanted and / or stored messages in
the provider server.

Information Req Type Description
Element
Message-Type M RejectMessageRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 95 (129)

Identifies the messages (either
Message-ID-List or Message-URI-
List).

Table 103. Information elements in RejectMessageRequest Primitive

Message-ID-List M Structure

15.2.12 The “DeliveryStatusReport” Primitive

The DeliveryStatusReport primitive allows the provider server to give the sender the message delivery status report.
The delivery report can also inform the client about an unsuccessful delivery attempt due to detected error conditions on the
receiving side.

Information Element | Req Type Description
Message-Type M DeliveryStatusReport Message identifier.
Meta-Information M Structure of Meta- Meta-information (see 8.1).
Information
Delivery-Result M Structure of Status- The delivery result shares the same
Primitive structure as Status (see 8.2).
Delivery-Time (0] DateTime Date and time of delivery
Message-Info M Structure Message information data, including {
Message-ID or Message-URI, Content-
type / MIME, encoding, size, sender and
recipients (User-ID and/or Client-ID
and/or Screen-Name and/or Group-1D
and/or Contact-List-ID), date and time,
validity }.

Table 104. Information elements in DeliveryStatusReport Primitive

15.2.13 The “BlockUserRequest” Primitive

The BlockUserRequest primitive allows the blocking groups or users (specified by UserID or ScreenName) in the
requesting server to prevent message or invitations delivery from certain sources. None of the message or invitations from the

blocked entity will be delivered to the blocking user.

Information Element Req Type Description
Message-Type M BlockUserRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information

Block-Entity-List (0) Structure A list of entities to be added to the block
list.

Unblock-Entity-List O Structure A list of entities to be removed from the
block list.

Block-List-Status M “Active” | “Inactive” Indicates if the block list is in use
(“Active”) or not (“Inactive”™).

Grant-Entity-List O Structure The list of entities to be added to the
grant list.

Ungrant-Entity-List O Structure The list of entities to be removed from
the grant list.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 96 (129)

Information Element Req Type Description
Grant-List-Status M “Active” | “Inactive” Indicates if the grant list is in use
(“Active”) or not (“Inactive”™).

Table 105. Information elements in BlockUserRequest Primitive

15.2.14 The “GetBlockedRequest” Primitive

The GetBlockedRequest primitive allows the blocking user in the requestor server to get its own list of blocked and
granted entities, and the status of the grant list and block list.

Information Element Req Type Description
Message-Type M GetBlockedRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).

Information

Table 106. Information elements in GetBlockedRequest Primitive

15.2.15 The “GetBlockedResponse” Primitive

The GetBlockedResponse primitive allows the provider server to return a list of blocked entities and granted users, and
the list status.

Information Element Req Type Description
Message-Type M GetBlockedResponse Message identifier
Status-Info M Structure of Status- Status information (see 8.2).
Primitive
Block-Entity-List C Structure The list of currently blocked entities.
Block-List-Status M “Active” | “Inactive” If the block list is in use (“Active”)

or not (“Inactive”).

Grant-Entity-List C Structure The list of currently granted entities.

Grant-List-Status M “Active” | “Inactive” If the grant list is in use (“Active”) or
not (“Inactive”).

Table 107. Information elements in GetBlockedResponse Primitive

15.3 Transactions

15.3.1 The “SendMessage” Transaction

Requestor Provider
Server Server
SendMessageRequest
»
L
SendMessageResponse
»i
)

Figure 49. The “SendMessage” Transaction

The purpose of “SendMessage” transaction is to allow the requestor server to send the instant messages through the provider
server. The user may send message to a group or to other user(s) at any suitable time.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 97 (129)

The requestor server sends a SendMessageRequest message to the provider server. The provider server returns a
SendMessageRsponse response containing the result and the message ID.

Primitive Direction
SendMessageRequest Requestor Server — Provider Server
SendMessageResponse Requestor Server < Provider Server

Table 108. Primitive Directions for SendMessage Transaction

15.3.2 The “ForwardMessage” Transaction

The purpose of “ForwardMessage” transaction is to allow the requestor server to forward instant messages through the
provider server.

The requestor server sends a ForwardMessageRequest message to the provider server. The provider server returns a
Status response containing the result.

This transaction belongs to the complementary service.

Requestor Provider
Server Server
ForwardMessageRequest
1q
Status
<

Figure 50. The “ForwardMessage” Transaction

Primitive Direction
ForwardMessageRequest Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 109. Primitive Directions for ForwardMessage Transaction
15.3.3 The “PushMessage” Transaction

Requestor Provider
Server Server

NewMessage

MessageDelivered

Figure 51. The “PushMessage” Transaction

The purpose of “PushMessage” transaction is to allow the provider server to deliver the messages to users through the
requestor server.

The provider server sends a NewMessage primitive to the requestor server. The requestor server returns a
MessageDelivered response containing the result and the message ID.

This transaction belongs to the complementary service.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 98 (129)

Primitive Direction
NewMessage Requestor Server <— Provider Server
MessageDelivered Requestor Server — Provider Server

Table 110. Primitive Directions for PushMessage Transaction

15.3.4 The “MessageNotification” Transaction

Requestor Provider
Server Server

MessageNotification

i
)

Status

A 4

Figure 52. The “MessageNotification” Transaction

The purpose of “MessageNotification” transaction is to allow the provider server to notify the users of new messages
through the requestor server.

The provider server sends a MessageNotification primitive to the requestor server. The requestor server returns a
Status response.

This transaction belongs to the complementary service.

Primitive Direction
MessageNotification Requestor Server <— Provider Server
Status Requestor Server — Provider Server

Table 111. Primitive Directions for MessageNotification Transaction

15.3.5 The “GetMessage” Transaction

Requestor Provider
Server Server
GetMessageRequest
»
NewMessage

MessageDelivered

Y

Status

Figure 53. The “GetMessage” Transaction

The purpose of the “GetMessage” transaction is to allow the requestor server to retrieve a new message from the provider
server.

The requestor server sends a GetMessageRequest message with a message ID to the provider server. The provider server
returns a NewMe s sage response containing the new message.

This transaction belongs to the complementary service.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 99 (129)

Primitive Direction
GetMessageRequest Requestor Server — Provider Server
NewMessage Requestor Server <— Provider Server
MessageDelivered Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 112. Primitive Directions for GetMessage Transaction
15.3.6 The “SetMessageDeliveryMethod” Transaction

Requestor Provider
Server Server

SetMessageDeliveryMethod

A 4

Status

A

Figure 54. The “SetMessageDeliveryMethod” Transaction

The purpose of the “SetMessageDeliveryMethod” transaction is to allow the user in the requestor server to set the
appropriate message delivery method from the provider server.

The requestor server sends a SetMessageDeliveryMethod request to the provider server. The provider server returns a
Status response.

This transaction belongs to the complementary service.

Primitive

Direction

SetMessageDeliveryMethod

Requestor Server — Provider Server

Status

Requestor Server < Provider Server

Table 113. Primitive Directions for SetMessageDeliveryMethod Transaction

15.3.7 The “GetMessagelList” Transaction

Requestor Provider
Server Server
GetMessagelListRequest
»
L

GetMessagelListResponse
»i
)

Figure 55. The “GetMessageList” Transaction

The purpose of the “GetMessageList” transaction is to allow the requestor server to get the stored Message-ID’s or Message-
URD’s so that they can be used in GetMessage or RejectMessage transactions. This transaction can be used to retrieve the
message history of the group if the GetMessageListRequest contains the Group ID.

The requestor server sends a GetMessageListRequest to the provider server. The provider server returns a
GetMessageListResponse.

This transaction belongs to the complementary service if the undelivered messages are requested.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 100 (129)

Primitive Direction
GetMessageListRequest Requestor Server — Provider Server
GetMessageListResponse Requestor Server < Provider Server

Table 114. Primitive Directions for GetMessageList Transaction
15.3.8 The “RejectMessage” Transaction

Requestor Provider
Server Server

RejectMessageRequest

Status

Figure 56. The “RejectMessage” Transaction

This transaction belongs to the complementary service.

Primitive Direction
RejectMessageRequest Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 115. Primitive Directions for RejectMessage Transaction
15.3.9 The “NotifyDeliveryStatusReport” Transaction

Requestor Provider
Server Server

DeliveryStatusReport

Status

\ 4

Figure 57. The “NotifyDeliveryStatusReport” Transaction

Primitive Direction
DeliveryStatusReport Requestor Server <— Provider Server
Status Requestor Server — Provider Server

Table 116. Primitive Directions for NotifyDeliveryStatusReport Transaction

15.3.10 The “BlockUser” Transaction

Requestor Provider
Server Server

BlockUserRequest

»

Status

Figure 58. The “BlockUser” Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 101 (129)

A user may block/un-block any other user at any suitable time. The purpose of the “BlockUser” transaction is to allow the
blocking user in the requestor server to prevent getting the messages or invitations from the blocked users in the provider
server.

The requestor server sends a BlockUserRequest request to the provider server containing the list of users to be blocked /
unblocked . The provider server returns a Status response.

This transaction belongs to the complementary service.

Primitive Direction
BlockUserRequest Requestor Server — Provider Server
Status Requestor Server «— Provider Server

Table 117. Primitive Directions for BlockUser Transaction
15.3.11 The “GetBlockedList” Transaction

Requestor
Server

Provider
Server

GetBlockedRequest

GetBlockedResponse

Figure 59. The “GetBlockedList” Transaction

A user may get its own list of blocked users at any suitable time. The purpose of the “GetBlockedList” transaction is to
allow the blocking user in the requestor server to get its own list of blocked users and granted users.

The requestor server sends a GetBlockedRequest request to the provider server. The provider server returns a
GetBlockedResponse response containing the list of blocked users.

This transaction belongs to the complementary service.

Primitive Direction
GetBlockedRequest Requestor Server — Provider Server
GetBlockedResponse Requestor Server < Provider Server

Table 118. Primitive Directions for GetBlockedList Transaction

15.4 Status Code

15.4.1 “SendMessage” Transaction
* Unknown content-type (415)
* Message queue full (507)
* Recipient user does not exist. (531)
* Recipient user blocked the sender (532)
* Recipient user is not logged in (533)
. Contact list does not exist. (700)
* Recipient group does not exist (800)

* Sender has not joined the group (or kicked) (808)

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 102 (129)

Private messaging is disabled in the group (812)
Private messaging is disabled for the recipient (813)

Domain not supported. (516)

15.4.2 “SetMessageDeliveryMethod” Transaction

Group does not exist. (800)

15.4.3 “GetMessagelList” Transaction

Group does not exist. (800)
Group 1is not joined (808)

History is not supported (821)

15.4.4 “RejectMessage” Transaction

Invalid Message-ID (426)

15.4.5 “NewMessage” Transaction

Invalid Message-ID (426)
Client will not accept the message delivery. (410)

Client does not support the content type. (415)

15.4.6 “GetMessage” Transaction

Invalid Message-ID (426)

15.4.7 “NotifyDeliveryStatusReport” Transaction

Unsupported content-type. (415)

Domain not supported. (516)

Contact list does not exist. (700)
Recipient user does not exist. (531)
Recipient user blocked the sender. (532)
Recipient user is not logged in. (533)

Message queue full. (507)

Recipient group does not exist. (800)

Sender has not joined the group (or kicked). (808)
Private messaging is disabled in the group. (812)
Private messaging is disabled for the recipient. (813)

15.4.8 “ForwardMessage” Transaction

Message queue full. (507)

Recipient user does not exist. (531)

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 103 (129)

* Recipient user blocked the sender. (532)

* Recipient user is not logged in. (533)

. Contact list does not exist. (700)

* Recipient group does not exist. (800)

* Sender has not joined the group (or kicked). (808)

* Private messaging is disabled in the group. (812)

* Private messaging is disabled for the recipient. (813)

U Invalid Message-ID. (426)
* Unsupported content-type. (415)

* Domain not supported. (516)

15.4.9 Block Transactions
e Unknown user ID (531)

* Unknown group-ID (800)

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 104 (129)

16.Service Relay — Group Features

This chapter focuses on the functional relay of Group features. Because of the server interoperation nature, the SSP has its
own requirement on meta-information and information elements in the primitives at transaction level. The complete
primitives and transaction flows of Group features at SSP semantics level has been defined in the following two sections.

Please refer to the CSP document so as to conclude how to relay the Group features from client-server interaction (CSP) to
server-server interoperation (SSP).

16.1 Primitives
16.1.1 The “CreateGroupRequest”’ Primitive

The CreateGroupRequest primitive is used for the user in the requestor server to create a private user group at any
suitable time. The CreateGroupRequest primitive contains the User-ID, Group-ID, the initial properties of the group,
the user's intention of joining to the created group, getting the group change notifications and optionally to define the screen
name as well. The provider server creates the group with the specified properties, and responds with aStatus essage.

Information Element Req Type Description
Message-Type M CreateGroupRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information

Group-ID M String Identifies the group

Group-Props M Structure The properties of the group.

Join-Group M Boolean A flag indicating that the user creating
the group joins the group at the same
time.

Screen-Name O Structure Screen name of the user in the group.

Subscribe-Notif M Boolean A flag indicating that the user wants to

activate the group change notifications
while joining the group.

Table 119. Information elements in CreateGroupRequest Primitive

16.1.2 The “DeleteGroupRequest” Primitive

The DeleteGroupRequest primitive allows the user with sufficient access rights in the requestor server to delete a
private user group at any suitable time. The DeleteGroupRequest primitive contains the Group-ID. The provider server
removes all currently joined users from the group (ServerlnitiatedLeaveGroup transaction), deletes the specified group, and
responds with a Status message.

Information Element Req Type Description
Message-Type M DeleteGroupRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).

Information
Group-1D M String Identifies the group

Table 120. Information elements in DeleteGroupRequest Primitive

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 105 (129)

16.1.3 The “JoinGroupRequest” Primitive

The JoinGroupRequest primitive allows the user in the requestor server to join a discussion group at any suitable time.
The JoinGroupRequest primitive contains the Group-ID, its screen name shown during the discussion, the joined users’
list request and the user's intention of getting the group change notifications.

Information Element Req Type Description
Message-Type M JoinGroupRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information

Group-ID M String Identifies the group

Joined-Request M “Yes” | “No” Indicates if the user wants the list of
currently joined users (“Yes”) or not
(6$N0,’)'

Screen-Name (0] String Screen name of the user in the group.

Subscribe-Notif M Boolean A flag indicating that the user wants to
activate the group change notifications
while joining the group.

Own-Prop-List (0] Structure The list of the user’s properties in that
group.

16.1.4 The “JoinGroupResponse” Primitive

The JoinGroupResponse primitive allows the provider server to return the processing result with the list of currently
joined users (if requested), and optionally a welcome note.

Information Element Req Type Description
Message-Type M JoinGroupResponse Message identifier
Status-Info M Structure of Status- Status information (see 8.2).
Primitive

Joined-User-Screen- C Structure The list of currently joined users

Name-List identified by their Screen-Name’s.
Present if it was requested.

Welcome-Text (0] String A short text to be shown to the user
when he/she has joined the group.

Table 121. Information elements in JoinGroupResponse Primitive

16.1.5 The “LeaveGroupRequest’ Primitive

The LeaveGroupRequest primitive allows the user in the requestor server to leave a discussion group at any suitable
time. The LeaveGroupRequest primitive contains the Group-ID.

Information Element Req Type Description
Message-Type M LeaveGroupRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).

Information

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 106 (129)

Description
Identifies the group

Information Element
Group-1D

Req
M

Table 122. Information elements in LeaveGroupRequest Primitive

Type

String

16.1.6 The “LeaveGrouplndication” Primitive

The LeaveGroupIndication primitive allows the provider server to return the group leaving result requested from the
requestor server. The LeaveGroupIndication primitive is also used for the provider server to initiate the group leaving
due to user kickout, group deletion etc.

Information Element | Req Type Description
Message-Type M LeaveGroupIndication Message identifier
Meta-Information C Structure of Meta- Meta-information (see 8.1). Present if in
Information ServerlnitiatedLeaveGroup transaction
Status-Info C Structure of Status- Status information (see 8.2). Present if in
Primitive LeaveGroup transaction.
Reason-text String Indicate why the user has to leave.
Group-1D C String Identification of the group that has been
left. Present if in
ServerlnitiatedLeaveGroup transaction.

Table 123. Information elements in LeaveGroupIndication Primitive

16.1.7 The “GetJoinedMemberRequest” Primitive

The GetJoinedMemberRequest primitive allows the requestor server to retrieve the joined member list of a group. This

primitive (and transaction) has no corresponding CSP primitive (and transaction).

Information Req Type Description
Element
Message-Type M GetJoinedMemberRequest Message identifier
Meta-Information M Structure of Meta-Information The meta-information (see 8.1).
Group-1D M String Identifies the group

Table 124. Information elements in GetJoinedMemberRequest Primitive

16.1.8 The “GetJoinedMemberResponse” Primitive

The GetJoinedMemberResponse primitive allows the provider server to return the result with a list of joined group

members.
Information Element | Req Type Description
Message-Type M GetJoinedMemberResponse Message identifier
Status-Info M Structure of Status-Primitive Status information (see 8.2).
Joined-User-List M Structure A list of joined members
identified by their { User-ID,
Screen-Name } pairs.

Table 125. Information elements in GetJoinedMemberResponse Primitive

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 107 (129)

16.1.9 The “GetGroupMemberRequest” Primitive

The GetGroupMemberRequest primitive allows the user with sufficient access rights in the requestor server to retrieve
the member list of a group. The GetGroupMemberRequest primitive contains the Group-ID.

Information Req Type Description
Element
Message-Type M GetGroupMemberRequest Message identifier
Meta-Information M Structure of Meta-Information The meta-information (see 8.1).
Group-1D M String Identifies the group

Table 126. Information elements in GetGroupMemberRequest Primitive

16.1.10 The “GetGroupMemberResponse” Primitive

The GetGroupMemberResponse primitive allows the provider server to return the result with a list of all group

members.

Information Element | Req Type Description

Message-Type M GetGroupMemberResponse Message identifier

Status-Info M Structure of Status-Primitive Status information (see 8.2).

User-ID-List-Adm O Structure The list of users that are in the
“Administrator” list.

User-ID-List-Mod O Structure The list of users that are in the
“Moderator” list.

User-ID-List O Structure The list of users that are ordinary
members.

Table 127. Information elements in GetGroupMemberResponse Primitive

16.1.11 The “AddGroupMemberRequest” Primitive

The AddGroupMemberRequest primitive allows the user with sufficient access rights in the requestor server to add the
other user(s) to a group. The AddGroupMemberRequest primitive contains the Group-ID and the list of user(s) to be
added. All of the newly added users are the ordinary members.

Information Element | Req Type Description
Message-Type M AddGroupMemberRequest Message identifier
Meta-Information M Structure of Meta-Information The meta-information (see 8.1).
Group-1D M String Identifies the group
User-ID-List O Structure The list of users to be added.

Table 128. Information elements in AddGroupMemberRequest Primitive

16.1.12 The “RemoveGroupMemberRequest” Primitive

The RemoveGroupMemberRequest primitive allows the user with sufficient access rights in the requestor server to
remove users from a group. The RemoveGroupMemberRequest primitive contains the Group-ID and the list of user(s) to

be removed.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 108 (129)

Information Element | Req Type Description
Message-Type M RemoveGroupMemberRequest Message identifier
Meta-Information M Structure of Meta-Information The meta-information (8.1).
Group-1D M String Identifies the group
User-ID-List M Structure A list of removed users.

Table 129. Information elements in RemoveGroupMemberRequest Primitive

16.1.13 The “MemberAccessRequest” Primitive

The MemberAccessRequest primitive allows the user with sufficient access rights in the requestor server to change the
access privileges of other users.

Information Element | Req Type Description
Message-Type M MemberAccessRequest Message identifier
Meta-Information M Structure of Meta-Information The meta-information (8.1).
Group-1D M String Identifies the group
User-ID-List-Adm O Structure The list of users to be set in the
“Administrator” list.
User-ID-List-Mod O Structure The list of users to be set in the
“Moderator” list.
User-ID-List O Structure The list of users to be set as

ordinary members.

Table 130. Information elements in MemberAccessRequest Primitive

16.1.14 The “GetGroupPropsRequest” Primitive

The GetGropPropsRequest primitive allows the user with sufficient access rights in the requestor server to retrieve the
properties of a group, and its own properties in that particular group. The GetGropPropsRequest primitive contains the

Group-ID.
Information Req Type Description
Element
Message-Type M GetGroupPropsRequest Message identifier
Meta-Information M Structure of Meta-Information | The meta-information (see 8.1).
Group-1D M String Identifies the group

Table 131. Information elements in GetGroupPropsRequest Primitive

16.1.15 The “GetGroupPropsResponse” Primitive

The GetGroupPropsResponse primitive allows the provider server to return the result with a list of group properties and
its own properties of the specified group.

Information Req Type Description
Element
Message-Type M GetGroupPropsResponse Message identifier
Status-Info M Structure of Status-Primitive Status information (see 8.2).

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 109 (129)

Information Req Type Description
Element
Group-Prop-List M Structure The list of group properties.
Own-Prop-List M Structure The list of the user’s properties in
that group.

Table 132. Information elements in GetGroupPropsResponse Primitive

16.1.16 The “SetGroupPropsRequest” Primitive

The SetGroupPropsRequest primitive allows the user with sufficient access rights in the requestor server to update the
properties of a group, and/or its own properties in that particular group. The SetGroupPropsRequest primitive contains
the Group-ID, the new properties of the group and/or the new user properties.

Information Req Type Description
Element
Message-Type M SetGroupPropsRequest Message identifier
Meta-Information M Structure of Meta-Information | The meta-information (see 8.1).
Group-1D M String Identifies the group
Group-Prop-List (0) Structure The list of group properties.
Own-Prop-List (0) Structure The list of the user’s properties in
that group.

Table 133. Information elements in SetGroupPropsRequest Primitive

16.1.17 The “RejectListRequest’ Primitive

The RejectListRequest primitive allows the user with sufficient access rights in the requestor server to retrieve /
update the reject list of a group. Users on the reject list cannot join the group.

Information Element Req Type Description
Message-Type M RejectListRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information

Group-1D M String Identifies the group

Add-User-ID-List (0) Structure The list of users to be added to the reject
list

Remove-User-ID-List O Structure The list of users to be removed from the
reject list.

Table 134. Information elements in RejectListRequest Primitive

16.1.18 The “RejectListResponse” Primitive

The RejectListResponse primitive allows the provider server to return the reject list of the group.

Information Req Type Description
Element
Message-Type M RejectListResponse Message identifier
Status-Info M Structure of Status- Status information (see 8.2).

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 110 (129)

Information Req Type Description
Element
Primitive
Reject-User-ID-List | O Structure A list of users in the reject list.

Table 135. Information elements in RejectListResponse Primitive

16.1.19 The “SubscribeGroupChangeRequest” Primitive

The SubscribeGroupChangeRequest primitive allows the user in the requestor server to subscribe to a group change
notice whenever another user leaves or joins the group, or the group properties have been changed.

Information Req Type Description
Element
Message-Type M SubscribeGroupChangeReque | Message identifier
st
Meta-Information M Structure of Meta-Information | The meta-information (see 8.1).
Group-1D M String Identifies the group

Table 136. Information elements in SubscribeGroupChangeRequest Primitive

16.1.20 The “UnsubscribeGroupChangeRequest” Primitive

The UnsubscribeGroupChangeRequest primitive is used to cancel the current subscription.

Information Req Type Description
Element
Message-Type M UnsubscribeGroupChang | Message identifier
eRequest
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information
Group-1D M String Identifies the group

Table 137. Information elements in UnsubscribeGroupChangeRequest Primitive

16.1.21 The “GetGroupSubStatusRequest” Primitive

The GetGroupSubStatusRequest primitive allows the user in the requestor server to retrieve its subscription status to
the group change notice. The GetGroupSubStatusRequest primitive contains the Group-ID.

Information Element Req Type Description
Message-Type M GetGroupSubStatusRequ | Message identifier
est
Meta-Information M Structure of Meta- The meta-information (see 8.1).
Information
Group-1D M String Identifies the group

Table 138. Information elements in GetGroupSubStatusRequest Primitive

16.1.22 The “GetGroupSubStatusResponse” Primitive

The GetGroupSubStatusResponse primitive allows the provider server to return the result with its current
subscription status to a group change notice.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 111 (129)

Information Element Req Type Description
Message-Type M GetGroupSubStatusResp | Message identifier
onse
Status-Info M Structure of Status- Status information (see 8.2).
Primitive
Group-1D M String Identifies the group
Subscription-Status M S’ | U’ Indicates the subscription status —
subscribed (‘S”) or not (‘U”).

Table 139. Information elements in GetGroupSubStatusResponse Primitive

16.1.23 The “GroupChangeNotice” Primitive

The GroupChangeNotice primitive allows the provider server to send notifications to the subscribed users whenever
users leave or join the group, or the group properties have been changed.

Information Element Req Type Description
Message-Type M GroupChangeNotice Message identifier
Meta-Information M Structure of Meta- The meta-information (see 8.1).

Information

Subscribing-User-ID-List | M Structure Identifies the users who subscribed to
the group change.

Group-1D M String Identification of the group.

Joined-User-Screen- O Structure A list of users that have joined the

Name-List group since last notification. The
users are identified by their screen
names

Left-User-Screen-Name- | O Structure A list of users that have left the

List group since last notification. The
users are identified by their screen
names

Group-Prop-List O Structure The new properties of the group.

Own-Props (0] Structure The new properties of the user in the
group.

Table 140. Information elements in GroupChangeNotice Primitive

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 112 (129)

16.2 Transactions

16.2.1 The “CreateGroup” Transaction

Requestor Provider
Server Server
CreateGroupRequest
Status
<

Figure 60. The “CreateGroup” Transaction

A user may create its own private group at any suitable time. The purpose of “CreateGroup” transaction is to allow the user
in the requestor server to create the user’s own private group.

The requestor server sends a CreateGroupRequest request to the provider server with the specified properties. The
provider server returns a Status response.

This transaction belongs to the complementary service.

Primitive Direction
CreateGroupRequest Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 141. Primitive Directions for CreateGroup Transaction
16.2.2 The “DeleteGroup” Transaction

Requestor Provider
Server Server

DeleteGroupRequest

Status

Figure 61. The “DeleteGroup” Transaction

A user with sufficient access rights may delete a private user group at any suitable time.

The requestor server sends a DeleteGroupRequest request to the provider server with the Group-ID. The provider
server removes all currently joined users from the group (ServerlnitiatedLeaveGroup transaction), deletes the specified
group, and responds with a Status message.

This transaction belongs to the complementary service.

Primitive Direction
DeleteGroupRequest Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 142. Primitive Directions for DeleteGroup Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 113 (129)

16.2.3 The “JoinGroup” Transaction

Requestor Provider
Server Server

JoinGroupRequest

JoinGroupResponse

A

Figure 62. The “JoinGroup” Transaction

A user may join a discussion group at any suitable time.

The requestor server sends a JoinGroupRequest request to the provider server with the Group-ID, its screen name
shown during the discussion, and the joined users’ list request. The provider server returns a JoinGroupResponse
response including the processing result with the list of currently joined users (if requested), and optionally a welcome note.

After a user successfully joins the group, the user may receive / send messages from / to the particular group.

Primitive Direction
JoinGroupRequest Requestor Server — Provider Server
JoinGroupResponse Requestor Server < Provider Server

Table 143. Primitive Directions for JoinGroup Transaction
16.2.4 The “LeaveGroup” Transaction

Requestor Provider
Server Server

LeaveGroupRequest

LeaveGrouplndication

A

Figure 63. The “LeaveGroup” Transaction

A user may leave a discussion group at any suitable time.

The requestor server sends a LeaveGroupRequest request to the provider server with the Group-ID. The provider server
returns a LeaveGroupIndication response.

Primitive Direction
LeaveGroupRequest Requestor Server — Provider Server
LeaveGroupIndication Requestor Server < Provider Server

Table 144. Primitive Directions for LeaveGroup Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 114 (129)

16.2.5 The “ServerlnitiatedLeaveGroup” Transaction

Requestor Provider
Server Server

LeaveGrouplindication
i
)

Status

Y

Figure 64. The “ServerInitiatedLeaveGroup” Transaction

A server may initiate a group leaving due to user kickout, group deletion etc.

The provider server sends a LeaveGroupIndication request to the requestor server.

Primitive Direction
LeaveGroupIndication Requestor Server < Provider Server

Table 145. Primitive Directions for ServerInitiatedLeaveGroup Transaction

16.2.6 The “GetJoinedMember” Transaction

Requestor Provider
Server Server

GetJoinedMemberRequest

GetJoinedMemberResponse

>
«

Figure 65. The “GetJoinedMember” Transaction

This transaction belongs to the complementary service.

Primitive Direction
GetJoinedMemberRequest Requestor Server — Provider Server
GetJoinedMemberResponse Requestor Server < Provider Server

Table 146. Primitive Directions for GetJoinedMember Transaction

16.2.7 The “GetGroupMember” Transaction

Requestor Provider
Server Server

GetGroupMemberRequest

GetGroupMemberResponse

>
«

Figure 66. The “GetGroupMember” Transaction
A user with sufficient access rights may retrieve the member list of a group.

The requestor server sends a GetGroupMemberRequest request to the provider server with the Group-ID. The provider
server returns a GetGroupMemberResponse response with the list of all group members.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 115 (129)

This transaction belongs to the complementary service.

Primitive Direction
GetGroupMemberRequest Requestor Server — Provider Server
GetGroupMemberResponse Requestor Server <— Provider Server

Table 147. Primitive Directions for GetGroupMember Transaction
16.2.8 The “AddGroupMember” Transaction

Requestor Provider
Server Server

AddGroupMemberRequest

»
Ll

Status

A

Figure 67. The “AddGroupMember” Transaction

A user with sufficient access rights may add user(s) to the member list of a group.

The requestor server sends a AddGroupMemberRequest request to the provider server with the Group-ID and the list(s)
of users to be added. The provider server returns a Status response.

This transaction belongs to the complementary service.

Primitive Direction
AddGroupMemberRequest Requestor Server — Provider Server
Status Requestor Server <— Provider Server

Table 148. Primitive Directions for AddGroupMember Transaction
16.2.9 The “RemoveGroupMember” Transaction

Requestor Provider
Server Server

RemoveGroupMemberRequest

»
Ll

Status

A

Figure 68. The “RemoveGroupMember” Transaction

A user with sufficient access rights may remove user(s) from the member list of a group.

The requestor server sends a RemoveGroupMemberRequest request to the provider server with the Group-ID and the
list(s) of users to be removed. The provider server returns a Status response.

This transaction belongs to the complementary service.

Primitive Direction
RemoveGroupMember Requestor Server — Provider Server
Request
Status Requestor Server < Provider Server

Table 149. Primitive Directions for RemoveGroupMember Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 116 (129)

16.2.10 The “MemberAccess” Transaction

Requestor Provider
Server Server
MemberAccessRequest
>
Status
i
)

Figure 69. The “MemberAccess” Transaction

This transaction belongs to the complementary service.

Primitive Direction
MemberAccessRequest Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 150. Primitive Directions for MemberAccess Transaction

16.2.11 The “GetGroupProps” Transaction

Requestor Provider
Server Server

GetGroupPropsRequest

GetGroupPropsResponse

Figure 70. The “GetGroupProps” Transaction

A user with sufficient access rights may retrieve the properties of a group, and it’s the user’s own properties in that particular
group.

The requestor server sends a GetGroupPropsRequest request to the provider server with the Group-ID. The provider

server returns a GetGroupPropsResponse response with the list of group properties and the user’s own properties for
the specified group.

Primitive Direction
GetGroupPropsRequest Requestor Server — Provider Server
GetGroupPropsResponse Requestor Server < Provider Server

Table 151. Primitive Directions for GetGroupProps Transaction

16.2.12 The “SetGroupProps” Transaction

Requestor Provider
Server Server
SetGroupPropsRequest
>
Status
»i
)

Figure 71. The “SetGroupProps” Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 117 (129)

A user with sufficient access rights may update the properties of a group, and/or it’s the user’s own properties in that
particular group.

The requestor server sends a SetGroupPropsRequest request to the provider server with the Group-ID, the new
properties of the group and/or the new user properties. The provider server returns a Status response.

Primitive Direction
SetGroupPropsRequest Requestor Server — Provider Server
Status Requestor Server < Provider Server

Table 152. Primitive Directions for SetGroupProps Transaction
16.2.13 The “RejectList” Transaction

Requestor Provider
Server Server

RejectListRequest

RejectListResponse

A

Figure 72. The “RejectList” Transaction

This transaction belongs to the complementary service.

Primitive Direction
RejectListRequest Requestor Server — Provider Server
RejectListResponse Requestor Server < Provider Server

Table 153. Primitive Directions for RejectList Transaction
16.2.14 The “SubscribeGroupChange” Transaction

Requestor Provider
Server Server

SubscribeGroupChangeRequest

Status

A

Figure 73. The “SubscribeGroupChange” Transaction

A user may subscribe to a group change notice whenever another user leaves or joins the group, or the group properties have
been changed.

The requestor server sends a SubscribeGroupChangeRequest request to the provider server with the Group-ID and an
optional subscription expiration time. The provider server returns a Status response.

Primitive Direction
SubscribeGroupChange Requestor Server — Provider Server
Request
Status Requestor Server «— Provider Server

Table 154. Primitive Directions for SubscribeGroupChange Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 118 (129)

16.2.15 The “UnsubscribeGroupChange” Transaction

Requestor Provider
Server Server
UnsubscribeGroupChangeRequest

Ll

Status

Figure 74. The “UnsubscribeGroupChange” Transaction
A user may cancel the subscription to the group change notice.

The requestor server sends a UnsubscribeGroupChangeRequest request to the provider server with the Group-ID.
The provider server returns a Status response.

Primitive Direction
UnsubscribeGroupChange Requestor Server — Provider Server
Request
Status Requestor Server < Provider Server

Table 155. Primitive Directions for UnsubscribeGroupChange Transaction

16.2.16 The “GetGroupSubStatus” Transaction

Requestor Provider
Server Server

GetGroupSubStatusRequest

»
Ll

GetGroupSubStatusResponse

)

Figure 75. The “GetGroupSubStatus” Transaction
A user may retrieve its subscription status to a group change notice.
The requestor server sends a GetGroupSubStatusRequest request to the provider server with the Group-ID. The

provider server returns a GetGroupSubStatusResponse response with the user’s current subscription status to a group
change notice.

Primitive Direction
GetGroupSubStatusRequest Requestor Server — Provider Server
GetGroupSubStatus Requestor Server <— Provider Server
Response

Table 156. Primitive Directions for GetGroupSubStatus Transaction

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 119 (129)

16.2.17 The “NotifyGroupChange” Transaction

Requestor Provider
Server Server

GroupChangeNotice

Status

Figure 76. The “NotifyGroupChange” Transaction

The server may send group change notification(s) to the subscribed users whenever a user leaves or joins the group, or the
group properties have been changed.

The provider server sends a GroupChangeNotice request to the requestor server with a list of recently joined or left
users, or the new properties of the group.

Primitive Direction
GroupChangeNotice Requestor Server < Provider Server
Status Requestor Server — Provider Server

Table 157. Primitive Directions for NotifyGroupChange Transaction

16.3 Status Code

16.3.1 “CreateGroup” Transaction
* Group already exists (801)
U Invalid group attribute(s) (806)
* The maximum number of groups has been reached (user limit) (814)
. The maximum number of groups has been reached for the server (815)

e Cannot have searchable group without name or topic. (822)

16.3.2 “DeleteGroup” Transaction
U Group does not exist (800)
* Group is public (804)

e Insufficient group privileges (816)

16.3.3 “JoinGroup” Transaction
U Group does not exist (800)
e Invalid/unsupported group properties (806)
e User already joined (807)
U Cannot join: “rejected” (809)
* Cannot join with the specified screen name; it is already in use (811)
e TInsufficient group privileges (816)

U The maximum number of allowed users has been reached (817)

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 120 (129)

16.3.4 “LeaveGroup” Transaction

U Group was not joined before transaction (808)

16.3.5 Group Membership Transactions
e Unknown user (531)
* Group does not exist (800)
e Insufficient group privileges (816)

* Group was not joined before transaction. (808)

16.3.6 Group Properties Transactions
U Group does not exist (800).
* Invalid group attribute(s) (806).

* Insufficient group privileges (816).

* Cannot have searchable group without name or topic.

16.3.7 “RejectList” Transaction

. User unknown (531).
U Group does not exist (800).

* Insufficient group privileges (816).

16.3.8 Group Change Transactions
U Group does not exist (800)

* Group was not joined before transaction. (808)

16.3.9 “GetdoinedMember” Transaction

* Group does not exist (800).

(822)

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 121 (129)

17.Status Codes and Descriptions

SSP uses the concept and paradigm of HTTP/1.1 response to define the status code. However, there is no logical or semantic
relationship between the status codes in SSP and the status codes in HTTP. The following sections define the general
categories as well as each status code.

17.1 1xx - Informational

The client or server MUST be prepared to accept one or more 1xx status codes prior to a regular response even if the client
does not expect a 100 “Continue” status code. A client or server agent SHALL ignore unexpected 1xx status code. This
category of the status codes does not complete a transaction.

17.1.1 100 — Continue

The client SHOULD continue with its request. The server has accepted the request for processing, but the processing has not
been completed. The request might or might not eventually be successfully completed. The server MUST send a final
response again upon completing the request. The “100” response is used when time of completion will be too long, possibly
causing the server and client connection to break.

17.1.2 101 — Queued

The client SHOULD continue with its request. The server has accepted the request, but does not have resources to start
processing. The request might or might not eventually be successfully completed. The server MUST send a final response
again upon completing the request.

17.1.3 102 — Started

The client SHOULD continue with its request. The server has accepted the request for processing. The “102” response is
used when server needs to start additional transactions in order to process the request. The server MUST send a final
response again upon completing the request.

17.1.4 104 — Server Queued

The client MAY continue with its next requests. The server has accepted the request, but does not have resources to start
processing. This status is used to indicate the overload of the server and therefore it is expected, that the client will (re)direct
the next requests to other possible connections between the servers. The request processing will take place and the server
MUST send a final response again upon completing the request.

17.2 2xx — Successful

The 2xx class of status codes indicates that the client’s request was successfully received, understood and accepted.

17.2.1 200 — Successful

This is used to indicate that the request succeeded.

17.2.2 201 — Partially Successful

This is used to indicate that the request was successfully completed, but some parts were not completed due to certain errors.
The details of the error case(s) are indicated in the response.

17.2.3 202 — Accepted

This is used to indicate that server accepted the request, but not able to receive acknowledgment about delivery to client
device. The request might or might not eventually be acted upon. There is no facility for re-sending a status code from an
asynchronous operation such as this.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 122 (129)

17.3 4xx - Client Error

The 4xx class of status codes is intended for cases in which the client seems to have erred. The server SHOULD include the
explanation of the error situation including whether it is a temporary or permanent condition. The user agents should be able
to display the error description to the user.

17.3.1 400 — Bad Request

The server could not understand the request due to the malformed syntax. The client SHALL NOT repeat the request without
modification.

17.3.2 401 — Unauthorized

When an authorization request is expected, the presence server will respond with this status code. Properties will contain
details of available authorization schemes.

17.3.3 402 — Bad Parameter

The server cannot understand one of the parameters in the request. The client SHALL NOT repeat the request without
modification.

17.3.4 403 — Forbidden

The server understood the request, but the principal settings denied access to some of the presence, contact information, or
group. Authorization will not help and the request SHOULD NOT be repeated. This type of response is also returned if user
not logged into the network.

17.3.5 404 - Not Found

The server cannot find anything matching the request. No indication is given of whether the condition is temporary or
permanent.

17.3.6 405 — Service Not Supported

The server does not support the service method in the request.

17.3.7 410 — Unable to Delivery

The server cannot deliver the request. The requested resource is no longer available at the server and no forwarding address is
known.

17.3.8 415 — Unsupported Media Type

The server cannot deliver the request, because the client cannot support the format of the entity that it requested.

17.3.9 420 — Invalid Transaction-1D

The server encountered an invalid Transaction-ID.

17.3.10 422 — User-ID and Client-ID Does Not Match

The User-ID and the Client-ID do not match in the request.

17.3.11 423 — Invalid Invitation-ID

The server encountered an invalid invitation ID.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 123 (129)

17.3.12 424 — Invalid Search-ID

The server encountered an invalid search ID.

17.3.13 425 — Invalid Search-Index

The server encountered an invalid search index.

17.3.14 426 — Invalid Message-ID

The server encountered an invalid Message-I1D.

17.3.15 431 — Unauthorized Group Membership

The user agent is not an authorized member of the group.

17.4 5xx — Server Error

The 5xx class of status codes is intended for cases in which the server is aware that it has erred or is incapable of performing
the request.

17.4.1 500 — Internal Server Error

The provider server encountered an unexpected condition that prevented it from fulfilling the request.

17.4.2 501 — Not Implemented

The server does not support the functionality required to fulfill the request. This is the appropriate response when the server
does not recognize the request method, and it is not capable of supporting it for any resources.

17.4.3 503 — Service Unavailable

The server is currently unable to handle the request due to a temporally overloading of the server.

17.4.4 504 — Invalid Timeout

The provider server has not returned the response within the repeat time.

17.4.5 505 — Version Not Supported

The server does not support, or refuses to support, the request version that was used. The response should contain the
preferred supported version.

17.4.6 506 — Service Not Agreed

The service request refers to a service that does not correspond to the service agreement between the service requestor and
provider server. The requestor server SHALL NOT repeat the request without a new service negotiation.

17.4.7 507 — Message Queue is Full

The server cannot fulfill the request because its message queue is full. The client MAY repeat the request.

17.4.8 516 — Domain Not Supported

The server does not support forwarding to different a domain space.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A

Page 124 (129)

17.4.9 521 — Unresponded Presence Request

The presence information provider does not respond to the presence service specified in the request.

17.4.10 522 — Unresponded Group Request

The group service provider does not respond to the requested group transaction.

17.4.11 531 — Unknown User

The specified user is unknown / User-ID is invalid.

17.4.12 532 —Recipient Blocked the Sender

The recipient of the message or invitation blocked the sender.

17.4.13 533 — Message Recipient Not Logged in

The recipient of the message is not logged in.

17.4.14 534 — Message Recipient Unauthorized

The recipient of the message is not authorized.

17.4.15 535 — Search Timed Out

The server has invalidated the requested search-request.

17.4.16 536 — Too many hits.

The query returned too many hits. The client needs to narrow the query.

17.4.17 537 — Too broad search criteria

The query cannot be processed since it is too broad.

17.5 6xx — Session

The 6xx class status code indicates the session-related status.

17.5.1 600 — Session Expired

The server connection was disconnected because the time-to-live parameter of provider session has expired.

17.5.2 601 — Forced Logout

The provider server has disconnected the requestor server.

17.5.3 604 — Invalid Session / Not Logged In

There is no such user session. (Previously not logged in, disconnected, or logged out.)

17.5.4 606 — Invalid Service-ID

Unknown Service-ID.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 125 (129)

17.5.5 607 — Redirection Refused

The redirected connection is refused.

17.5.6 608 — Invalid Password

The password provided by the requestor server was incorrect; it does not match with the given Service-ID. The requestor
SHALL NOT repeat the request without modification.

17.5.7 609 — Connection Expired

The connection was disconnected because the time-to-live parameter has expired. This is NOT the last active connection pair.

17.5.8 610 — Server Search Limit is Exceeded

The search limit exceeds the server limit.

17.5.9 620 — Invalid Server Session

There is no such session. (Previously not logged in, disconnected, or logged out.) If only the session-ID is invalid in the
Meta-information, this error indication should be used instead of Unknown transaction.

17.6 7xx — Presence and contact list

The 7xx class indicates the presence and contact list related status codes.

17.6.1 700 — Contact List Does Not Exist

The contact list specified in the request does not exist.

17.6.2 701 — Contact List Already Exists

The contact list specified in the request already exists.

17.6.3 702 — Invalid or Unsupported User Properties

The user properties specified in the request are invalid or not supported.

17.6.4 750 — Invalid or Unsupported Presence Attributes

The presence attributes specified in the request are invalid or not supported.

17.6.5 751 — Invalid or Unsupported Presence Value

The presence value(s) specified in the request are invalid or not supported. The client SHOULD NOT repeat the request
without modification.

17.6.6 752 — Invalid or Unsupported Contact List Property

One or more contact list properties specified in the request are invalid or not supported. The client SHOULD NOT repeat the
request without modification.

17.6.7 760 — Automatic Subscription / Unsubscription is not supported

The server does not support the automatic subscription when adding a user to the contact list, and does not support the
automatic unsubscription when deleting the contact list or removing a user from the contact list.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 126 (129)

17.7 8xx — Groups

The 8xx class indicates the group-related status codes.

17.7.1 800 — Group Does Not Exist

The group specified in the request does not exist.

17.7.2 801 — Group Already Exists

The group specified in the request already exists.

17.7.3 802 — Group is Open

The group specified in the request is an open group.

17.7.4 803 — Group is Closed

The group specified in the request is a closed group.

17.7.5 804 — Group is Public

The group specified in the request is public.

17.7.6 805 — Group Private

The group specified in the request is private.

17.7.7 806 — Invalid / Unsupported Group Properties

The group properties specified in the request are invalid or not supported.

17.7.8 807 — Group is Already Joined

The group specified in the request is already joined. If the server does not allow the same user to join a group more than once,
this error code is used to indicate that the user is already joined to the particular group.

17.7.9 808 — Group is Not Joined

The request cannot be processed, because it requires the user to be joined to the group.

17.7.10 809 — Rejected

The user has been rejected from the particular group. He/she is forced to leave the group and cannot join.

17.7.11 810 — Not a Group Member

The request cannot be processed because the user is not a member of the specified closed group.

17.7.12 811 — Screen Name Already in Use

The screen name specified in the request is already in use. If the server does not allow the same screen name to be used in a
group more than once then this error code is used to indicate that the screen name is already in use. The requesting user may
try to change his/her screen name and repeat the transaction.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 127 (129)

17.7.13 812 — Private Messaging is Disabled for Group

The client requested private message delivery, but the private messaging is disabled in the particular group.

17.7.14 813 — Private Messaging is Disabled for User

The client requested private message delivery, but the private messaging is disabled for the particular user.

17.7.15 814 — The Maximum Number of Groups Has Been Reached for the User

The server limits the maximum number of groups per user. The limit has been reached; additional groups cannot be created.
The client SHOULD NOT repeat the request until a group that belongs to the particular user has been deleted.

17.7.16 815 — The Maximum Number of Groups Has Been Reached for the
Server

The maximum number of groups is limited on the server. The server limit has been reached; additional groups cannot be
created. The client MAY repeat the request.

17.7.17 816 — Insufficient Group Privileges

The user does not have sufficient privileges in the particular group to perform the requested operation. The client SHOULD
NOT repeat the request until the user has been authorized properly.

17.7.18 817 — The Maximum Number of Joined Users Has Been Reached

The maximum number of joined users has been reached in the requested group. The client MAY repeat the request.
17.7.19 821 — History is Not Supported
The server does not support group message history caching.

17.7.20 822 - Cannot have searchable group without name or topic.

The server cannot perform group search without group name or group topic. Either group name or group topic or both must
be non-empty to support group search.

17.8 9xx — General errors

The 9xx class indicates status codes too general to fit into other classes.

17.8.1 900 — Multiple errors

No part of the transaction was successfully processed for several reasons, thus not only one other status code can indicate the
errors. The details of the error cases are indicated in the response.

17.8.2 901 — General Address Error

The general address is not supported. No specific error is given due to security or privacy reason.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 128 (129)

18.Static Conformance Requirements

The static conformance requirements for this specification is specified in [CSP SCR] and [SSP SCR].

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-IMPS-WV-SSP-V1_2-20050125-A Page 129 (129)

Appendix A. Change History (Informative)
A.1 Approved Version History

Reference Date Description
OMA-WV-SSP -V1_1-20021001-A 01 Oct 2002 Version 1.1
OMA-IMPS-WV-SSP-V1_2-20050125-A 25 Jan 2005 Version 1.2
Ref TP Doc# OMA-TP-2004-0457-IMPS-V1_2-for-final-approval

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

	1. Scope
	2. References
	2.1 Normative References
	2.2 Informative References

	3. Terminology and Conventions
	3.1 Conventions
	3.2 Definitions
	3.3 Abbreviations

	4. Introduction
	5. Server-Server Protocol
	5.1 SSP Interoperability Model
	5.2 SSP Interoperability Rules
	5.3 SSP Service Agreement and Routing
	5.4 SSP Interoperability Case Study
	5.4.1 Case 1 – Two Users are Located in different Home Domains. Each Home Domain has its own SE. Two Home Domains are Connected
	5.4.2 Case 2 – Two Users are Located in the same Home Domain
	5.4.3 Case 3 – Domain A and C have Direct SSP Connection while Domain C Provides A with Complementary PSE
	5.4.4 Case 4 – Two Users are Located in different Home Domains. Each Home Domain has its complementary PSE. Two Home Domains are Connected
	5.4.5 Special Case Processing
	5.4.6 Two Users are Located in different Home Domains. Both Home Domains Share the same PSE

	5.5 SSP Protocol Stack

	6. Protocol Introduction
	6.1 Basics
	6.1.1 Session
	6.1.2 Transaction
	6.1.3 Message
	6.1.4 Primitive

	6.2 Session Pair vs. Connections
	6.3 Addressing
	6.3.1 General SSP Addressing Schema
	6.3.2 Address encoding
	6.3.3 User Addressing and Global-User-ID
	6.3.4 Contact List Addressing and Contact-List-ID
	6.3.5 Group Addressing and Group-ID
	6.3.6 Content Addressing and Content-ID
	6.3.7 Client Addressing and Client-ID
	6.3.8 Service Addressing and Service-ID
	6.3.9 Message and Message-ID

	6.4 Data Types
	6.4.1 Char
	6.4.2 Integer
	6.4.3 String
	6.4.4 Boolean
	6.4.5 Enum
	6.4.6 DateTime
	6.4.7 Structure

	6.5 Infrastructure Elements
	6.5.1 Host-ID
	6.5.2 Redirect (Host) Name

	6.6 Features and Functions
	6.6.1 Security
	6.6.2 Connection Management
	6.6.3 Transaction Management
	6.6.4 Session Management
	6.6.5 Service Management
	6.6.6 User Profile Management
	6.6.7 Service Relay

	7. Security
	7.1 Trust Models
	7.2 Access Control
	7.3 Transport Security
	7.4 Individual Domain Security

	8. Transaction Management
	8.1 Meta-Information
	8.2 Status Primitive
	8.3 Asynchronous Transaction
	8.4 General Error Handling
	8.5 Invalid Transaction
	8.6 Unknown Transaction
	8.7 General Status Code

	9. Session Management
	9.1 Access Control
	9.1.1 Session Establishment
	9.1.2 Session Maintenance
	9.1.3 Session Termination
	9.1.4 Session Re-establishment

	9.2 Primitives
	9.2.1 The "SendSecretToken" Primitive
	9.2.2 The “LoginRequest” Primitive
	9.2.3 The “LoginResponse” Primitive
	9.2.4 The “LogoutRequest” Primitive
	9.2.5 The “Disconnect” Primitive
	9.2.6 The “KeepAliveRequest” Primitive
	9.2.7 The “KeepAliveResponse” Primitive

	9.3 Transactions
	9.3.1 The “Login” Transaction
	9.3.2 The “Logout” Transaction
	9.3.3 The “Disconnect” Transaction
	9.3.4 The “KeepAlive” Transaction

	9.4 Status Code
	9.4.1 “Login” Transaction
	9.4.2 “Logout” / “Disconnect” Transaction

	10. Service Management
	10.1 Service Structure
	10.2 General
	10.3 SAP Feature
	10.4 Common IMPS feature
	10.5 Presence Feature
	10.6 IM Feature
	10.7 Group Feature
	10.8 Primitives
	10.8.1 The “GetServiceRequest” Primitive
	10.8.2 The “ServiceList” Primitive
	10.8.3 The “ServiceNegotiation” Primitive
	10.8.4 The “ServiceAgreement” Primitive

	10.9 Transactions
	10.9.1 The “GetAvailableService” Transaction
	10.9.2 The “ServiceIndication” Transaction
	10.9.3 The “SetServiceAgreement” Transaction

	10.10 Status Code

	11. Interoperability Management – User Profile Management
	11.1 User Profile
	11.2 Primitives
	11.2.1 The “GetUserProfileRequest” Primitive
	11.2.2 The “UserProfile” Primitive
	11.2.3 The “UpdateUserProfileRequest” Primitive

	11.3 Transactions
	11.3.1 The “GetUserProfile” Transaction
	11.3.2 The “UpdateUserProfile” Transaction

	11.4 Status Code

	12. Service Relay – Common IMPS Features
	12.1 Overview
	12.2 Primitives
	12.2.1 The “SearchRequest” Primitive
	12.2.2 The “SearchResponse” Primitive
	12.2.3 The “StopSearchRequest” Primitive
	12.2.4 The “InviteRequest” Primitive
	12.2.5 The “InviteResponse” Primitive
	12.2.6 The “InviteUserRequest” Primitive
	12.2.7 The “InviteUserResponse” Primitive
	12.2.8 The “CancelInviteRequest” Primitive
	12.2.9 The “CancelInviteUserRequest” Primitive
	12.2.10 The “VerifyIDRequest” Primitive
	12.2.11 The “VerifyIDResponse” Primitive
	12.2.12 The “GetReactiveAuthStatusRequest” Primitive
	12.2.13 The “GetReactiveAuthStatusResponse” Primitive

	12.3 Transactions
	12.3.1 The “GeneralSearch” Transaction
	12.3.2 The “StopSearch” Transaction
	12.3.3 The “Invitation” Transaction
	12.3.3.1 Basic Invitation transaction
	12.3.3.2 Complementary Invitation transaction

	12.3.4 The “CancelInvitation” Transaction
	12.3.4.1 Basic Cancel Invitation transaction
	12.3.4.2 Complementary Cancel Invitation transaction

	12.3.5 The “VerifyID” Transaction
	12.3.9 The “GetReactiveAuthStatus” Transaction

	12.4 Status Code
	12.4.1 “GeneralSearch” Transaction
	12.4.2 “StopSearch” Transaction
	12.4.3 “Invitation” Transaction
	12.4.4 “CancelInvitation” Transaction
	12.4.5 VerifyWVID” Transaction

	13. Service Relay – Contact List Features
	13.1 Overview
	13.2 Primitives
	13.2.1 The “CreateContactListRequest” Primitive
	13.2.2 The “DeleteContactListRequest” Primitive
	13.2.3 The “GetContactListRequest” Primitive
	13.2.4 The “GetContactListResponse” Primitive
	13.2.5 The “GetListMemberRequest” Primitive
	13.2.6 The “AddListMemberRequest” Primitive
	13.2.7 The “RemoveListMemberRequest” Primitive
	13.2.8 The “ContactListMemberResponse” Primitive
	13.2.9 The “GetListPropsRequest” Primitive
	13.2.10 The “SetListPropsRequest” Primitive
	13.2.11 The “ContactListPropsResponse” Primitive
	13.2.12 The “CreateAttrListRequest” Primitive
	13.2.13 The “DeleteAttrListRequest” Primitive
	13.2.14 The “GetAttrListRequest” Primitive
	13.2.15 The “GetAttrListResponse” Primitive

	13.3 Transactions
	13.3.1 The “CreateContactList” Transaction
	13.3.2 The “DeleteContactList” Transaction
	13.3.3 The “GetContactList” Transaction
	13.3.4 The “GetListMember” Transaction
	13.3.5 The “AddListMember” Transaction
	13.3.6 The “RemoveListMember” Transaction
	13.3.7 The “GetListProperties” Transaction
	13.3.8 The “SetListProperties” Transaction
	13.3.9 The “CreateAttributeList” Transaction
	13.3.10 The “DeleteAttrList” Transaction
	13.3.11 The “GetAttrList” Transaction

	13.4 Status Code
	13.4.1 Contact List Transactions
	13.4.2 Attribute List Transactions

	14. Service Relay – Presence Features
	14.1 Overview
	14.2 Primitives
	14.2.1 The “SubscribeRequest” Primitive
	14.2.2 The “AuthorizationRequest” Primitive
	14.2.3 The “AuthorizationResponse” Primitive
	14.2.4 The “UnsubscribeRequest” Primitive
	14.2.5 The “PresenceNotification” Primitive
	14.2.6 The “GetWatcherListRequest” Primitive
	14.2.7 The “GetWatcherListResponse” Primitive
	14.2.8 The “GetPresenceRequest” Primitive
	14.2.9 The “GetPresenceResponse” Primitive
	14.2.10 The “UpdatePresenceRequest” Primitive
	14.2.11 The “CancelAuthRequest” Primitive
	14.2.12 The “SuspendRequest” Primitive

	14.3 Transactions
	14.3.1 The “Subscribe” Transaction
	14.3.2 The “ReactiveAuthorization” Transaction
	14.3.3 The “Unsubscribe” Transaction
	14.3.4 The “PresenceNotification” Transaction
	14.3.5 The “GetWatcherList” Transaction
	14.3.6 The “GetPresence” Transaction
	14.3.7 The “UpdatePresence” Transaction
	14.3.8 The “CancelAuthorization” Transaction
	14.3.9 The “Suspend” Transaction

	14.4 Status Code
	14.4.1 “ReactiveAuthorization” Transaction
	14.4.2 “GetPresence” Transaction
	14.4.3 “UpdatePresence” Transaction
	14.4.4 Other Presence Transactions

	15. Service Relay – Instant Messaging Features
	15.1 Overview
	15.2 Primitives
	15.2.1 The “SendMessageRequest” Primitive
	15.2.2 The “SendMessageResponse” Primitive
	15.2.3 The “ForwardMessageRequest” Primitive
	15.2.4 The “NewMessage” Primitive
	15.2.5 The “MessageDelivered” Primitive
	15.2.6 The “MessageNotification” Primitive
	15.2.7 The “GetMessageRequest” Primitive
	15.2.8 The “SetMessageDeliveryMethod” Primitive
	15.2.9 The “GetMessageListRequest” Primitive
	15.2.10 The “GetMessageListResponse” Primitive
	15.2.11 The “RejectMessageRequest” Primitive
	15.2.12 The “DeliveryStatusReport” Primitive
	15.2.13 The “BlockUserRequest” Primitive
	15.2.14 The “GetBlockedRequest” Primitive
	15.2.15 The “GetBlockedResponse” Primitive

	15.3 Transactions
	15.3.1 The “SendMessage” Transaction
	15.3.2 The “ForwardMessage” Transaction
	15.3.3 The “PushMessage” Transaction
	15.3.4 The “MessageNotification” Transaction
	15.3.5 The “GetMessage” Transaction
	15.3.6 The “SetMessageDeliveryMethod” Transaction
	15.3.7 The “GetMessageList” Transaction
	15.3.8 The “RejectMessage” Transaction
	15.3.9 The “NotifyDeliveryStatusReport” Transaction
	15.3.10 The “BlockUser” Transaction
	15.3.11 The “GetBlockedList” Transaction

	15.4 Status Code
	15.4.1 “SendMessage” Transaction
	15.4.2 “SetMessageDeliveryMethod” Transaction
	15.4.3 “GetMessageList” Transaction
	15.4.4 “RejectMessage” Transaction
	15.4.5 “NewMessage” Transaction
	15.4.6 “GetMessage” Transaction
	15.4.7 “NotifyDeliveryStatusReport” Transaction
	15.4.8 “ForwardMessage” Transaction
	15.4.9 Block Transactions

	16. Service Relay – Group Features
	16.1 Primitives
	16.1.1 The “CreateGroupRequest” Primitive
	16.1.2 The “DeleteGroupRequest” Primitive
	16.1.3 The “JoinGroupRequest” Primitive
	16.1.4 The “JoinGroupResponse” Primitive
	16.1.5 The “LeaveGroupRequest” Primitive
	16.1.6 The “LeaveGroupIndication” Primitive
	16.1.7 The “GetJoinedMemberRequest” Primitive
	16.1.8 The “GetJoinedMemberResponse” Primitive
	16.1.9 The “GetGroupMemberRequest” Primitive
	16.1.10 The “GetGroupMemberResponse” Primitive
	16.1.11 The “AddGroupMemberRequest” Primitive
	16.1.12 The “RemoveGroupMemberRequest” Primitive
	16.1.13 The “MemberAccessRequest” Primitive
	16.1.14 The “GetGroupPropsRequest” Primitive
	16.1.15 The “GetGroupPropsResponse” Primitive
	16.1.16 The “SetGroupPropsRequest” Primitive
	16.1.17 The “RejectListRequest” Primitive
	16.1.18 The “RejectListResponse” Primitive
	16.1.19 The “SubscribeGroupChangeRequest” Primitive
	16.1.20 The “UnsubscribeGroupChangeRequest” Primitive
	16.1.21 The “GetGroupSubStatusRequest” Primitive
	16.1.22 The “GetGroupSubStatusResponse” Primitive
	16.1.23 The “GroupChangeNotice” Primitive

	16.2 Transactions
	16.2.1 The “CreateGroup” Transaction
	16.2.2 The “DeleteGroup” Transaction
	16.2.3 The “JoinGroup” Transaction
	16.2.4 The “LeaveGroup” Transaction
	16.2.5 The “ServerInitiatedLeaveGroup” Transaction
	16.2.6 The “GetJoinedMember” Transaction
	16.2.7 The “GetGroupMember” Transaction
	16.2.8 The “AddGroupMember” Transaction
	16.2.9 The “RemoveGroupMember” Transaction
	16.2.10 The “MemberAccess” Transaction
	16.2.11 The “GetGroupProps” Transaction
	16.2.12 The “SetGroupProps” Transaction
	16.2.13 The “RejectList” Transaction
	16.2.14 The “SubscribeGroupChange” Transaction
	16.2.15 The “UnsubscribeGroupChange” Transaction
	16.2.16 The “GetGroupSubStatus” Transaction
	16.2.17 The “NotifyGroupChange” Transaction

	16.3 Status Code
	16.3.1 “CreateGroup” Transaction
	16.3.2 “DeleteGroup” Transaction
	16.3.3 “JoinGroup” Transaction
	16.3.4 “LeaveGroup” Transaction
	16.3.5 Group Membership Transactions
	16.3.6 Group Properties Transactions
	16.3.7 “RejectList” Transaction
	16.3.8 Group Change Transactions
	16.3.9 “GetJoinedMember” Transaction

	17. Status Codes and Descriptions
	17.1 1xx – Informational
	17.1.1 100 – Continue
	17.1.2 101 – Queued
	17.1.3 102 – Started
	17.1.4 104 – Server Queued

	17.2 2xx – Successful
	17.2.1 200 – Successful
	17.2.2 201 – Partially Successful
	17.2.3 202 – Accepted

	17.3 4xx – Client Error
	17.3.1 400 – Bad Request
	17.3.2 401 – Unauthorized
	17.3.3 402 – Bad Parameter
	17.3.4 403 – Forbidden
	17.3.5 404 - Not Found
	17.3.6 405 – Service Not Supported
	17.3.7 410 – Unable to Delivery
	17.3.8 415 – Unsupported Media Type
	17.3.9 420 – Invalid Transaction-ID
	17.3.10 422 – User-ID and Client-ID Does Not Match
	17.3.11 423 – Invalid Invitation-ID
	17.3.12 424 – Invalid Search-ID
	17.3.13 425 – Invalid Search-Index
	17.3.14 426 – Invalid Message-ID
	17.3.15 431 – Unauthorized Group Membership

	17.4 5xx – Server Error
	17.4.1 500 – Internal Server Error
	17.4.2 501 – Not Implemented
	17.4.3 503 – Service Unavailable
	17.4.4 504 – Invalid Timeout
	17.4.5 505 – Version Not Supported
	17.4.6 506 – Service Not Agreed
	17.4.7 507 – Message Queue is Full
	17.4.8 516 – Domain Not Supported
	17.4.9 521 – Unresponded Presence Request
	17.4.10 522 – Unresponded Group Request
	17.4.11 531 – Unknown User
	17.4.12 532 –Recipient Blocked the Sender
	17.4.13 533 – Message Recipient Not Logged in
	17.4.14 534 – Message Recipient Unauthorized
	17.4.15 535 – Search Timed Out
	17.4.16 536 – Too many hits.
	17.4.17 537 – Too broad search criteria

	17.5 6xx – Session
	17.5.1 600 – Session Expired
	17.5.2 601 – Forced Logout
	17.5.3 604 – Invalid Session / Not Logged In
	17.5.4 606 – Invalid Service-ID
	17.5.5 607 – Redirection Refused
	17.5.6 608 – Invalid Password
	17.5.7 609 – Connection Expired
	17.5.8 610 – Server Search Limit is Exceeded
	17.5.9 620 – Invalid Server Session

	17.6 7xx – Presence and contact list
	17.6.1 700 – Contact List Does Not Exist
	17.6.2 701 – Contact List Already Exists
	17.6.3 702 – Invalid or Unsupported User Properties
	17.6.4 750 – Invalid or Unsupported Presence Attributes
	17.6.5 751 – Invalid or Unsupported Presence Value
	17.6.6 752 – Invalid or Unsupported Contact List Property
	17.6.7 760 – Automatic Subscription / Unsubscription is not supported

	17.7 8xx – Groups
	17.7.1 800 – Group Does Not Exist
	17.7.2 801 – Group Already Exists
	17.7.3 802 – Group is Open
	17.7.4 803 – Group is Closed
	17.7.5 804 – Group is Public
	17.7.6 805 – Group Private
	17.7.7 806 – Invalid / Unsupported Group Properties
	17.7.8 807 – Group is Already Joined
	17.7.9 808 – Group is Not Joined
	17.7.10 809 – Rejected
	17.7.11 810 – Not a Group Member
	17.7.12 811 – Screen Name Already in Use
	17.7.13 812 – Private Messaging is Disabled for Group
	17.7.14 813 – Private Messaging is Disabled for User
	17.7.15 814 – The Maximum Number of Groups Has Been Reached for the User
	17.7.16 815 – The Maximum Number of Groups Has Been Reached for the Server
	17.7.17 816 – Insufficient Group Privileges
	17.7.18 817 – The Maximum Number of Joined Users Has Been Reached
	17.7.19 821 – History is Not Supported
	17.7.20 822 - Cannot have searchable group without name or topic.

	17.8 9xx – General errors
	17.8.1 900 – Multiple errors
	17.8.2 901 – General Address Error

	18. Static Conformance Requirements

