
 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

Push Over The Air
Approved Version 2.1 – 05 Apr 2011

Open Mobile Alliance
OMA-WAP-TS-PushOTA-V2_1-20110405-A

Continues the Technical Activities
Originated in the WAP Forum

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 2 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of
this document and the information contained herein, and makes no representations or warranties regarding third party IPR,
including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you
must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in
the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 3 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

Contents
1. SCOPE .. 5

2. REFERENCES .. 6

2.1 NORMATIVE REFERENCES .. 6

2.2 INFORMATIVE REFERENCES ... 6

3. TERMINOLOGY AND CONVENTIONS .. 7

3.1 CONVENTIONS ... 7

3.2 DEFINITIONS .. 7

3.3 ABBREVIATIONS .. 9

4. INTRODUCTION ... 10

5. PROTOCOL VARIANTS ... 11

6. PUSH OTA PROTOCOL OVER WSP (OTA-WSP) ... 12

6.1 SERVICE PRIMITIVE DEFINITION ... 12

6.1.1 Notations .. 12
6.1.2 Service Primitive Overview ... 12

6.1.3 Push Operational Primitives... 13

6.1.4 Push Management Primitives ... 16

6.1.5 Pom-Connect ... 16
6.2 PROTOCOL DESCRIPTION ... 18

6.2.1 Connectionless Push .. 18
6.2.2 Connection-Oriented Push ... 18

6.2.3 Application Addressing ... 18
6.2.4 Initiator Authentication .. 18
6.2.5 Trust Delegation... 18
6.2.6 Bearer Selection and Control ... 19

6.3 PROTOCOL OPERATIONS .. 19

6.3.1 Application Dispatching .. 19
6.4 PROTOCOL DATA UNIT DEFINITION .. 19

6.4.1 Header Based Protocol Data Unit .. 19

7. PUSH OTA PROTOCOL OVER HTTP (OTA-HTTP) ... 20

7.1 PROTOCOL OVERVIEW ... 20

7.2 PROTOCOL DESCRIPTION ... 20

7.2.1 HTTP Compliance ... 20
7.2.2 TLS Compliance .. 20
7.2.3 IP Connectivity Procedure ... 21
7.2.4 TCP Connection Procedure .. 21

7.2.5 Terminal Registration .. 23
7.2.6 Mutual Terminal/PPG Identification and Authentication .. 28

7.3 APPLICATION ADDRESSING .. 33

7.4 CONTENT PUSH ... 33

7.4.1 POST Request Format ... 33
7.4.2 POST Response Format ... 34

7.4.3 Example ... 36
7.5 VERSION CONTROL ... 37

7.6 BEARER INDICATION ... 37

7.6.1 X-Wap-Bearer-Indication Header .. 37

8. SESSION INITIATION REQUEST .. 38

8.1 SIR IN OTA-HTTP ... 38

8.1.1 Session Initiation Application .. 38
8.1.2 PPG Procedure ... 38
8.1.3 Terminal Procedure .. 38

8.2 SIR IN OTA-WSP ... 38

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 4 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

8.2.1 Session Initiation Application .. 38
8.2.2 PPG Procedure ... 38
8.2.3 Terminal Procedure .. 39

8.3 SECURITY CONSIDERATIONS .. 39

8.4 SIA CONTENT BASED PROTOCOL DATA UNIT... 40

APPENDIX A. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) ... 42

A.1 CLIENT/TERMINAL FEATURES ... 42

A.2 SERVER/PPG FEATURES ... 44

APPENDIX B. CHANGE HISTORY (INFORMATIVE) .. 46

B.1 APPROVED VERSION HISTORY ... 46

Figures
Figure 1: WAP Push Architecture ... 10

Figure 2: Illustration of Layer to Layer Communication .. 12

Figure 3: Unconfirmed Push ... 13

Figure 4: Confirmed Data Push.. 14

Figure 5: The TO-TCP method .. 22

Figure 6: The PO-TCP method .. 22

Figure 7: Registration (OPTIONS) request example ... 24

Figure 8: Registration validation (POST) example... 25

Figure 9: Terminal accepts unauthenticated registration request .. 32

Figure 10: Terminal requests PPG authentication prior registration... 32

Figure 11: Use of "Basic" authentication .. 33

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 5 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

1. Scope
This specification defines the Over the Air protocol for delivery of content to a mobile terminal from a Push Proxy Gateway
(PPG), referred to as Push OTA protocol. The protocol specified in this document is an application layer protocol that can run
on top of the WSP protocol [WSP], or on top of HTTP 1.1 [RFC2616].

The Push OTA protocol specified in this document addresses the following considerations:

• means for server initiated asynchronous push.

• means for application addressing.

• means for exchange of push control information over the air.

• means for bearer selection and control.

• means for authentication.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 6 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

2. References

2.1 Normative References
[ClientID] "Client ID Specification". Open Mobile Alliance.

WAP-196-ClientID. URL: http://www.openmobilealliance.org/

[IOPProc] “OMA Interoperability Policy and Process”. Open Mobile Alliance. OMA-IOP-Process-v1_0.
URL:http//www.openmobilealliance.org/

[ProvCont] "Provisioning Content Type Specification". Open Mobile Alliance.. WAP-183-ProvCont.
URL: http://www.openmobilealliance.org/

[PushMsg] "Push Message Specification". Open Mobile Alliance.
WAP-251-PushMessage. URL: http://www.openmobilealliance.org/

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner.
March 1997. URL:http://www.ietf.org/rfc/rfc2119.txt

[RFC2234] "Augmented BNF for Syntax Specifications: ABNF". D. Crocker, Ed., P. Overell.
November 1997. URL:http://www.ietf.org/rfc/rfc2234.txt

[RFC2616] "Hypertext Transfer Protocol – HTTP/1.1". R. Fielding et al.
June 1999. URL:http://www.ietf.org/rfc/rfc2616.txt

[RFC2617] "HTTP Authentication: Basic and Digest Access Authentication". J. Franks et al.
June 1999. URL:http://www.ietf.org/rfc/rfc2617.txt

[SHA] "Secure Hash Standard". NIST FIPS PUB 180-1. National Institute of Standards and
Technology, U.S. Department of Commerce. Draft May 1994.

[WAPTLS] "WAP TLS Profile and Tunnelling". Open Mobile Alliance.
WAP-219-TLS. URL: http://www.openmobilealliance.org/

[WDP] "Wireless Datagram Protocol". Open Mobile Alliance.
WAP-259-WDP. URL: http://www.openmobilealliance.org/

[WSP] "Wireless Session Protocol". Open Mobile Alliance.
WAP-230-WSP. URL: http://www.openmobilealliance.org/

[W-HTTP] "Wireless Profiled HTTP". Open Mobile Alliance.
WAP-229-HTTP. URL: http://www.openmobilealliance.org/

[W-TCP] "Wireless Profiled TCP". Open Mobile Alliance.
WAP-225-HTTP. URL: http://www.openmobilealliance.org/

[WTLS] "Wireless Transport Layer Security Protocol". Open Mobile Alliance.
WAP-261-WTLS. URL: http://www.openmobilealliance.org/

2.2 Informative References
[IANA] "Internet Assigned Numbers Authority", URL: http://www.iana.org/

[ProvArch] "WAP Provisioning Architecture Overview". Open Mobile Alliance.
WAP-182-ProvArch. URL: http://www.openmobilealliance.org/

[OMNA] "OMA Naming Authority". Open Mobile Alliance.
URL: http://www.openmobilealliance.org/

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 7 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

3. Terminology and Conventions

3.1 Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be
informative.

3.2 Definitions

Application A value-added data service provided to a Client. The application may utilise both push and pull data
transfer to deliver content

Application-Level Addressing the ability to address push content between a particular user agent on a client and push initiator on a
server

Bearer Network a network used to carry the messages of a transport-layer protocol between physical devices. Multiple
bearer networks may be used over the life of a single push session.

Client In the context of push, a client is a device (or service) that expects to receive push content from a
server. In the context of pull, it is a device initiates a request to a server for content or data. See also
"device".

Contact Point address information that describes how to reach a push proxy gateway, including transport protocol
address and port of the push proxy gateway.

Content subject matter (data) stored or generated at an origin server. Content is typically displayed or
interpreted by a user agent on a client. Content can both be returned in response to a user request, or be
pushed directly to a client.

Content Encoding when used as a verb, content encoding indicates the act of converting a data object from one format to
another. Typically the resulting format requires less physical space than the original, is easier to
process or store, and/or is encrypted. When used as a noun, content encoding specifies a particular
format or encoding standard or process.

Content Format actual representation of content.

Device is a network entity that is capable of sending and/or receiving packets of information and has a unique
device address. A device can act as either a client or a server within a given context or across multiple
contexts. For example, a device can service a number of clients (as a server) while being a client to
another server.

End-user see "user"

Multicast Message a push message containing a single address which implicitly specifies more than one OTA client
address.

Push Access Protocol a protocol used for conveying content that should be pushed to a client, and push related control
information, between a Push Initiator and a Push Proxy/Gateway.

Push Framework the entire push system. The push framework encompasses the protocols, service interfaces, and
software entities that provide the means to push data to user agents in the client.

Push Initiator the entity that originates push content and submits it to the push framework for delivery to a user agent
on a client.

Push OTA Protocol a protocol used for conveying content between a Push Proxy/Gateway and a certain user agent on a
client.

Push Proxy Gateway a proxy gateway that provides push proxy services

Push Session A WSP session that is capable of conducting push operations.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 8 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

Registration refers to a procedure where the PPG becomes aware of the terminal’s current capabilities
and preferences.

Registration Context a state where the PPG is aware of at least the last capabilities and preferences conveyed from the
terminal.

Server a device (or service) that passively waits for connection requests from one or more clients. A server
may accept or reject a connection request from a client. A server may initiate a connection to a client
as part of a service (push).

Terminal see "client".

Terminal-ID an identifier that is used by a PPG to uniquely identify a terminal.

User a user is a person who interacts with a user agent to view, hear, or otherwise use a rendered content.
Also referred to as end-user.

User agent a user agent (or content interpreter) is any software or device that interprets resources. This
may include textual browsers, voice browsers, search engines, etc.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 9 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

3.3 Abbreviations

ABNF Augmented Backus-Naur Form
CPI Capability and Preference Information
CSD Circuit Switched Data
DNS Domain Name Server
GPRS General Packet Radio Service
HTTP Hypertext Transfer Protocol
IANA Internet Assigned Numbers Authority
IP Internet Protocol
MSISDN Mobile Station International Subscriber Directory Number
OMA Open Mobile Alliance
OTA Over The Air
OTA-HTTP (Push) OTA over HTTP
OTA-HTTP-TLS OTA-HTTP over TLS
OTA-WSP (Push) OTA over WSP
PDP Packet Data Protocol
PI Push Initiator
PO-TCP PPG Originated TCP connection establishment method
PPG Push Proxy Gateway
QoS Quality of Service
RADIUS Remote Authentication Dial-In User Service
RFC Request For Comments
SHA-1 Secure Hash Algorithm 1
SIA Session Initiation Application
SIR Session Initiation Request
SMS Short Message Service
TCP Transmission Control Protocol
TLS Transport Layer Security
TO-TCP Terminal Originated TCP connection establishment method
UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
WAP Wireless Application Protocol
WDP Wireless Datagram Protocol
WSP Wireless Session Protocol
WTLS Wireless Transport Layer Security

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 10 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

4. Introduction
The push architecture allows a PPG to send data to a terminal in an asynchronous manner. The PPG and the terminal
communicate using the Push OTA protocol, which utilises WSP [WSP] and/or HTTP [W-HTTP] services. The first protocol
variant is referred to as "OTA-WSP", and the latter as "OTA-HTTP".

Connection-oriented push requires that some point-to-point connectivity (a push session if OTA-WSP is used, a TCP
connection if OTA-HTTP is used) be established before the push content can be delivered. Connectivity for connection-
oriented push can be shared among multiple terminal applications. A terminal application is identified by its Application-ID.

Connectionless push is always performed using WSP/WDP. The two registered WDP ports for connectionless push can be
shared among multiple terminal applications.

A PPG is able to request a terminal to initiate connectivity by sending a special content type to the terminal using
connectionless push.

The overall push architecture is outlined in Figure 1.

WAP Client Push Initiator
(origin server) Push Proxy Gateway

Push

Access
Protocol

Push

Over-the-Air
Protocol

Figure 1: WAP Push Architecture

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 11 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

5. Protocol Variants
The Push OTA Protocol can be implemented to run on top of WSP [WSP], as described in section 6, or on top of HTTP 1.1
[RFC2616], as described in section 7. The WSP variant, henceforth referred to as "OTA-WSP", provides for both connection-
oriented and connectionless push.

The HTTP variant, referred to as "OTA-HTTP", only provides functionality for connection-oriented push. If TLS [WAPTLS]
is implemented in conjunction with OTA-HTTP to provide transport layer hop-by-hop security, this protocol variant is
referred to as "OTA-HTTP-TLS".

A terminal MUST support either the connection-oriented services provided by OTA-WSP or those provided by OTA-HTTP
when connection-oriented push is implemented, and MAY support both. A Push Proxy Gateway SHOULD implement both
variants in order to support a wide range of mobile terminals. Both the terminal and the PPG MUST support the
connectionless services provided by OTA-WSP as defined in section 6.2.1.

Note: The protocol variants use different ports, which are registered with IANA.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 12 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

6. Push OTA Protocol over WSP (OTA-WSP)
This section describes how OTA-WSP is implemented. This variant runs on top of WSP [WSP], and is suitable for use with
low-bandwidth bearers that do not support TCP/IP, e.g. SMS.

6.1 Service Primitive Definition

6.1.1 Notations

Notations for primitives and parameters follow the notations defined in [WSP].

6.1.2 Service Primitive Overview

This section is informative.

The primitives defined in this section include both push operational primitives and push management primitives. While the
push operational primitives are used to deliver content from a server (also referred to as "PPG") to a client (also referred to as
"terminal"), the push management primitives are used to establish and manage the push session.

Figure 2 demonstrates the layer-to-layer communication through the primitives.

Push Application

WSP

Push Operational
Primitives

Push
Management

Primitives
W SP Service

Primitives

OTA-WSP

Figure 2: Illustration of Layer to Layer Communication

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 13 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

6.1.3 Push Operational Primitives

6.1.3.1 Po-Push

This primitive is used to send information from the server in an unconfirmed manner on a push session using the connection-
oriented service.

 Primitive Po-Push
Parameter req ind
Push Headers O C(=)
Authenticated O C(=)
Trusted O C(=)
Last O C(=)
Push Body O C(=)

Push Headers are defined in [PushMsg].

Authenticated indicates if the initiator URI is authenticated by the server.

Trusted indicates if the push content is trusted by the server. This provides a mechanism for a client to delegate its trust
policy to the server (i.e. PPG).

Last is a hint to the client that this is the last message to send according to the server’s best knowledge. The client MAY
terminate use of the network bearer.

Push Body is the content in the push, which is semantically equivalent to an HTTP entity body. If Push Body is empty, the
rest of the parameters MUST be inspected and used (e.g. for bearer or cache control), if applicable before the empty Push
Body is ignored.

Provider

Po-Push.req

Po-Push.ind

Client Server

Figure 3: Unconfirmed Push

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 14 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

6.1.3.2 Po-ConfirmedPush

This primitive is used to send information from the server in a confirmed manner on a push session using the connection-
oriented service. It is the service user (e.g. client push application) that confirms the push by invoking Po-ConfirmedPush.res
primitive when the service user takes responsibility for the push message. If the service user can not take responsibility for
the push message, it MUST abort the push operation by invoking the Po-PushAbort.req primitive (6.1.3.3). The service
provider MAY abort the push on behalf of the service user at its discretion (e.g. if the service user does not respond).

 Primitive Po-ConfirmedPush
Parameter req ind res cnf
Server Push Id M – – M(=)
Client Push Id – M M(=) –
Push Headers O C(=) – –
Authenticated O C(=) – –
Trusted O (=) – –

Last O C(=) – –
Push Body O C(=) – –
Acknowledgement Headers – – O P(=)

Server Push Id is defined in S-ConfirmedPush primitive in [WSP].

 Client Push Id is defined in S-ConfirmedPush primitive in [WSP].

Push Headers are defined in [PushMsg].

Authenticated indicates if the initiator URI is authenticated by the server.

Trusted indicates if the push content is trusted by the server. This provides a mechanism for a client to delegate its trust
policy to the server (i.e. PPG).

Last is a hint to the client that this is the last message to send according to the server’s best knowledge. The client MAY
terminate use of the network bearer.

Push Body is the content in the push, which is semantically equivalent to an HTTP entity body. If Push Body is empty, the
rest of the parameters MUST be inspected and used (e.g. for bearer or cache control), if applicable before the empty Push
Body is ignored.

Acknowledgement Headers is defined in S-ConfirmedPush primitive in [WSP].

Provider

Po-ConfirmedPush.req

 Po-ConfirmedPush.ind

Po-ConfirmedPush.cnf

 Po-ConfirmedPush.res

Client Server

Figure 4: Confirmed Data Push

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 15 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

6.1.3.3 Po-PushAbort

This primitive is used to reject a push operation. It is part of the ConfirmedPush facility. It is mapped directly to S-PushAbort
primitive in [WSP]. Only the following values for the Reason parameter SHOULD be used:

Name Description
USERREQ aborted without specific causes, retries allowed
USERRFS aborted without specific causes, no retries
USERPND aborted because the push message can not be

delivered to the intended destination
USERDCR aborted because the push message is discarded due to

resource shortage
USERDCU aborted because the content type can not be

processed

6.1.3.4 Po-Unit-Push

This primitive is used to send information from the server to the client in a unconfirmed manner on the connectionless
session service [WSP].

 Primitive Po-Unit-Push
Parameter req ind
Client Address M M(=)
Server Address M M(=)
Push Id M M(=)
Push Headers O C(=)
Authenticated O C(=)
Trusted O C(=)
Last O C(=)
Push Body O C(=)

Client Address identifies the peer to which the push is to be sent.

Server Address identifies the originator of the push.

Push Id MAY be used by the service users to distinguish between pushes.

Push Headers are defined in [PushMsg].

Authenticated indicates if the initiator URI is authenticated by the server.

Trusted indicates if the push content is trusted by the server. This provides a mechanism for a client to delegate its trust
policy to the server (i.e. PPG).

Last is a hint to the client that this is the last message to send according to the server’s best knowledge. The client MAY
terminate use of the network bearer.

Push Body is the content in the push, which is semantically equivalent to an HTTP entity body. If Push Body is empty, the
rest of the parameters MUST be inspected and used (e.g. for bearer or cache control), if applicable before the empty Push
Body is ignored.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 16 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

6.1.4 Push Management Primitives

6.1.5 Pom-Connect

This primitive is used to create a push session as requested by the client. It is mapped to S-Connect primitive in WSP [WSP]
with additional parameters.

 Primitive Pom-SessionCreate
Parameter req ind res cnf
Server Address M M(=) – –
Client Address M M(=) – –
Client Headers O C(=) – –
Requested Capabilities O M – –
Server Headers – – O C(=)
Negotiated Capabilities – – O C(=)
Accept Application O C(=) – –
Bearer Indication O C(=) – –

Server Address identifies the server with which the push session is to be established.

Client Address identifies the client that will receive the push content.

Client Headers, Server Headers, Requested Capabilities, and Negotiated Capabilities are defined in S-Connect primitive
[WSP].

Accept Application provides a list of ApplicationIDs. The first Application in the list identifies the default Application-ID. If
the list is empty, or if the first element in the list cannot uniquely identify an application (e.g. *), WML User Agent is
assumed the default Application-ID.

Bearer Indication indicates the bearer type over which the push session is established. The service user (e.g. server) MAY
use the information to make bearer selection decisions. Use the well-known bearer type codes as defined in an appendix of
[WDP].

6.1.5.1 Pom-Suspend

This primitive is used to request the push session to be suspended so that no activity is allowed. This primitive is mapped
directly to S-Suspend primitive in WSP [WSP].

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 17 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

6.1.5.2 Pom-Resume

This primitive is used to request the push session, which is previously suspended, to be resumed. It is mapped directly on S-
Resume primitive in WSP [WSP].

 Primitive Pom-Resume
Parameter req ind res cnf
Server Address M M(=) – –
Client Address M M(=) – –
Client Headers O C(=) – –
Server Headers – – O C(=)
Bearer Indication O C(=) – –

Server Address identifies the server with which the push session is to be established.

Client Address identifies the client that will receive the push content.

Client Headers and Server Headers are defined in [WSP].

Bearer Indication indicates the bearer type over which the push session is established. The service user (e.g. server) MAY
use the information to make bearer selection decisions. Use the well-known bearer type codes as defined in an appendix of
[WDP].

6.1.5.3 Pom-Disconnect

This primitive is used to terminate a push session. It is mapped directly on S-Disconnect primitive in WSP [WSP].

6.1.5.4 Pom-SessionRequest

This primitive is used by the server to request a push session to a client.

 Primitive Pom-SessionRequest
Parameter req ind
Client Address M M(=)
Server Address M M(=)
Push Headers M M(=)
SIA Content M M(=)

Client Address identifies the peer to which the session is requested.

Server Address identifies the address of the server.

Push Headers are defined in S-Push primitive in [WSP]. It contains at least the following two headers,

• Content-Type: application/vnd.wap.sia

• X-Wap-Application-Id: x-wap-application:push.sia

SIA Content contains a list of Application-ID’s required for push sessions and a list of contact points. It is a special content
type as defined in section 8.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 18 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

6.2 Protocol Description
OTA-WSP provides for connectionless and connection-oriented push as described in subsequent sections.

6.2.1 Connectionless Push
The connectionless push must be performed through WSP S-Unit-Push [WSP], which is one of WSP connectionless session
service primitives. Two registered WDP ports [WDP], secure and non-secure ports, are reserved in every client capable of
connectionless push. The client MUST support the non-secure port and MAY support the secure port. If the secure port is
supported, WTLS MUST be supported on the port [WTLS]. To accommodate server initiated WTLS connections, a client
supporting secure connectionless push MUST be able to initiate the WTLS negotiation process as a result of receiving a
Hello Request message [WTLS] on its registered secure WDP port. In doing so, the client MUST use the address quadruplet
from where the Hello Request was originated. To protect against spoofing, the client SHOULD validate the Hello Request by
comparing the source address from where the Hello request was originated with a pre-existing list of contact points for
trusted servers. The client SHOULD ignore the Hello Request if the validation fails.

6.2.2 Connection-Oriented Push

The connection-oriented push MUST be performed through the WSP S-Push (e.g. unconfirmed push) or S-ConfirmedPush
of WSP session service primitives. A push session MUST be established to carry out those primitives. A push session is a
WSP session on which the confirmed, unconfirmed or both, push capability(ies) [WSP] is enabled.

The push session can use either secure or non-secure transport services. Server-side port numbers are reserved in [WDP] for
both options. WTLS MUST be used if the secure transport service is required. The secure transport service is required if
either the port number in a contact point is a registered secure port [WDP] or the secure transport is indicated in a pre -
existing list of contact points for PPGs.

6.2.3 Application Addressing

The push content can be delivered to any application, as identified by the Application-ID, in a client. In the case of
connectionless push, the push content is first delivered to one of the registered WDP ports in the client, the Push OTA-WSP
layer of the client is responsible to further deliver the push content to the application as identified by the Application-ID. For
the connection-oriented push, the push content is first delivered on the push session, the Push OTA-WSP layer of the client is
responsible to further deliver the push content to the application as identified by the Application-ID.

The default Application-ID is that of the WML User Agent for connectionless push, and also for connection-oriented push
unless another value is negotiated during push session establishment.

6.2.4 Initiator Authentication

Push initiator authentication by the PPG may be indicated to the terminal through the inclusion of the Authenticated flag and
Initiator URI. That model of authentication is based on transitive trust established between the PI and the client. The PPG
MUST positively authenticate the PI to use the Authenticated flag.

When receiving the Authenticated flag, the client MAY determine if the push initiator is trusted by comparing its list of
trusted initiator URIs with the authenticated Initiator URI in the push message.

6.2.5 Trust Delegation

The PPG MAY include the Trusted Flag to indicate to the client that the content is trusted based on its best knowledge. The
client MAY trust the content if it has a pre-existing trust relationship with the Push Proxy Gateway.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 19 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

6.2.6 Bearer Selection and Control

Bearer Type Indication provides means for the client to report the actual bearer used on a particular session when the bearer
type cannot be inferred otherwise. The PPG MAY use this information to support bearer selection in an implementation
dependent manner.

Bearer control is facilitated with the Last flag, whose presence provides a hint to the client that this is the last message to send
according to the server’s best knowledge. The client MAY terminate use of the network bearer.

6.3 Protocol Operations

6.3.1 Application Dispatching

When a client receives a push, it uses the Application-ID to locate an application as identified by the Application-ID. For
connectionless push, the client dispatches the push content received on the registered WDP port to the application identified
by the Application-ID. For connection-oriented push, the client dispatches the push content received on the push session to
the application identified by the Application-ID.

6.4 Protocol Data Unit Definition
This section describes the protocol data units to be used with OTA-WSP.

6.4.1 Header Based Protocol Data Unit

The header definition rules in this sub-section follow the rules in the HTTP [RFC2616] and ABNF [RFC2234] specifications.
WSP compact encoding rules MUST be used to encode them for over the air efficiency.

6.4.1.1 Accept-Application
 Accept-Application = "Accept-Application" ":" ap p-ranges
 App-ranges = (#app-id | "*")
 ; app-id as defined in [PushMsg]
 ; * means any Application-ID.

6.4.1.2 Bearer-Indication
 Bearer-Indication = "Bearer-Indication" ":" bear er-type
 Bearer-type = 2HEXDIG
 ; Bearer-type as defined in [WDP].

6.4.1.3 Push Flag
 Push-Flag = "Push-Flag" ":" 1*7BIT
 ; bit mask flags to indicate the following:
 ; 1: initiator URI is authenticated.
 ; 10: content is trusted.
 ; 100: last push message.
 ; other: reserved for future use.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 20 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

7. Push OTA Protocol over HTTP (OTA-HTTP)

7.1 Protocol Overview
This section is informative.

This section describes how OTA-HTTP is implemented. It is designed to run on top of HTTP 1.1 [RFC2616], and is intended
to be used in conjunction with bearers that support TCP/IP, e.g. GPRS. Due to the characteristics of TCP/IP and HTTP, only
connection-oriented push is supported. Connectionless push is accomplished using WSP (see section 6.2.1).

Since this protocol variant relies upon the existence of an HTTP server in the mobile device, the device is not referenced as
"client" in the subsequent sections, but instead "mobile terminal" or simply "terminal" to avoid confusion.

The core features of OTA-HTTP consists of:

• IP connectivity procedure
The protocol is designed to work with mobile networks that support network initiated IP connectivity establishment
procedures, and also with networks that solely rely upon the terminals’ ability to establish IP connectivity with the
network.

• TCP connection procedure
In order to accommodate various mobile network types, e.g. with respect to IP address awareness (for example, a
dynamically assigned terminal IP address might not always be known by the PPG), the protocol provides two
methods for establishing the TCP connection to be used for communication between the PPG and the terminal.

• Registration
The term "registration" refers to a procedure where the PPG becomes aware of the terminal’s current capabilities and
preferences. The information is conveyed using headers, and may be stored in the PPG to avoid that the information
is communicated in future transactions. The registration procedure is always initiated by the PPG.

• Content push
Delivery of content from the PPG to the terminal is accomplished by using HTTP’s POST method. Hence, OTA-
HTTP relies upon the existence of an HTTP server in the terminal, and an HTTP client in the PPG.

In addition to the functions listed above, OTA-HTTP provides a means to identify, and optionally authenticate, both the PPG
and the mobile terminal during registration and push delivery. TLS may be used to provide additional authentication, data
integrity, and confidentiality. The term "OTA-HTTP-TLS" is used when OTA-HTTP is used in conjunction with TLS to
provide measures for secure push.

A mechanism for version control is also specified to allow future extensions of the protocol.

7.2 Protocol Description

7.2.1 HTTP Compliance

A terminal implementing OTA-HTTP MUST implement the HTTP server features specified for a "WAP Terminal" in
[W-HTTP]. A PPG implementing OTA-HTTP MUST implement the HTTP client features specified for a "WAP Proxy" in
[W-HTTP].

7.2.2 TLS Compliance

A terminal implementing OTA-HTTP-TLS MUST implement the TLS client features specified by [WAPTLS]. A PPG
implementing OTA-HTTP-TLS MUST implement the TLS server features specified by [WAPTLS]. However, note that
OTA-HTTP-TLS is OPTIONAL both for terminals and PPGs.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 21 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

7.2.3 IP Connectivity Procedure

This section is informative.

Before a TCP connection between the PPG and the terminal can be established, the terminal needs to have IP connectivity
with the network. For example, a circuit must be established for CSD, or a PDP context must be created for GPRS. The
terminal’s IP address does also need to be made known to the PPG.

In some networks it is possible to initiate the IP connectivity establishment procedure from the network, and by some means
find out what IP address the terminal has been assigned (e.g. if static IP addresses are used, or by lookup in a RADIUS
server).

In contrast, some networks do not offer the kind of functionality described in the previous paragraph, or it might not be
available to the PPG. In that case, the PPG can send an SIR (see section 8) to the terminal using either connectionless push
over a bearer where a well-known address can be used (e.g. MSISDN for SMS), or by using connection-oriented push if
applicable.

It is also possible that the terminal takes the initiative of its own accord to establish IP connectivity with the network and then
establish a TCP connection towards the PPG. In that case the PPG does not need to send an SIR to the terminal.

7.2.4 TCP Connection Procedure

In order to provide flexibility, OTA-HTTP offers two methods for establishing one or more TCP connections to be used for
registration and push delivery (such TCP connections are henceforth referred to as "active TCP connections"). These are:

• Terminal Originated TCP connection establishment method (TO-TCP)
This method provides the terminal with a means to establish a TCP connection towards the PPG that can be used for
subsequent registration and push delivery.

• PPG Originated TCP connection establishment method (PO-TCP)
This method provides the PPG with a means to establish a TCP connection towards the terminal that can be used for
subsequent registration and push delivery.

The TCP connection methods listed above are further described in the subsequent section. Either the PPG or the terminal may
at any time close an active TCP connection.

7.2.4.1 TCP Connection Methods

This section describes the methods available to establish an active TCP connection between the PPG and the terminal. The
source port SHOULD be assigned from the range of dynamic ports [IANA]. The destination port MUST be the port specified
for the method utilised.

A terminal implementing OTA-HTTP MUST support the non-secure, and MAY support the secure TO-TCP
(OTA-HTTP-TLS) methods. It MUST also support the non-secure, and MAY support the secure PO-TCP (OTA-HTTP-TLS)
methods.

A PPG implementing OTA-HTTP MUST support the non-secure, and MAY support the secure TO-TCP (OTA-HTTP-TLS)
methods. It SHOULD also support the non-secure, and MAY support the secure PO-TCP (OTA-HTTP-TLS) methods.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 22 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

7.2.4.1.1 The TO-TCP Method

This method allows a TCP connection established by the terminal towards the PPG to be used as the active TCP connection
(this implies that the terminal must be prepared to receive HTTP requests on this connection). The destination port (in order
of precedence) is:

• a port specified in SIR (if present)

• a provisioned port (if so provisioned) or another port agreed by some implementation specific means

• one of the registered push ports (non-secure/secure)

 Establish (Active) TCP Connection

DynP
ProvP
RegP
SirP

SirP/ProvP/RegP

= Dynamically assigned port
= Provisioned port
= Registered port
= Port in SIR

DynP

Terminal PPG

Figure 5: The TO-TCP method

If a terminal establishes a TCP connection towards the registered secure port on a PPG, or another port that requires TLS, the
terminal MUST establish a TLS session on that connection before it accepts any push content via that connection.

7.2.4.1.2 The PO-TCP Method

This method assumes that the terminal has IP connectivity with the network (or that the PPG can initiate the IP connectivity
establishment procedure via the network), and its IP address is known by the PPG. A TCP connection established by the PPG
towards the terminal is used as the active TCP connection. The destination port (in order of precedence) is:

• a provisioned port (if so provisioned), or another port agreed by some implementation specific means

• one of the registered push ports (non-secure/secure)

 Establish (Active) TCP Connection

DynP
ProvP
RegP

= Dynamically assigned port
= Provisioned Port
= Registered port

DynP ProvP/
RegP

Terminal PPG

Figure 6: The PO-TCP method

If a PPG establishes a TCP connection towards the registered secure port on a terminal, or another port that requires TLS, a
terminal supporting OTA-HTTP-TLS MUST establish a TLS session on that connection before it accepts any push content
via that connection.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 23 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

7.2.5 Terminal Registration

When an active TCP connection has been established between the PPG and the terminal, the PPG may at any time query the
terminal for its capabilities and preferences. The push specific capability and preference information (CPI) are carried in a set
of headers specified for this purpose. During this registration procedure, the terminal and the PPG are also identified and
optionally authenticated (see section 7.2.6).

Once the CPI has been conveyed to the PPG, a registration context is established between the PPG and the terminal. The
registration context is defined within the scope of a certain Terminal-ID, and also the bearer used when the CPI was
conveyed. The CPI may change within the boundaries of a registration context. Each CPI is identified by a so-called CPITag,
which is computed by the terminal, providing the PPG with a means to store multiple identifiable CPIs for a registration
context.

The CPITag assumed to be valid by the PPG might be included in registration requests (using the HTTP OPTIONS
method) made towards the terminal. If the assumed CPITag does not match the terminal's CPITag, or if it is not present, the
terminal's current CPI and CPITag will be conveyed to the PPG by using headers specified for this purpose. On the other
hand, if the CPITag matches, the information does not need to be conveyed.

Similarly, the CPITag assumed to be valid by the PPG might also be included in subsequent push requests (using the HTTP
POST method) made towards the terminal. This provides a mechanism for registration validation. The terminal should
reject the push request if the assumed CPITag does not match the terminal's CPITag. In this case the PPG will be made aware
of the terminal's actual CPITag and can then, before it sends a new push request, either find the terminal's current CPI in its
local storage or make a registration request if it is not found. On the other hand, if the CPITag matches, the push request is
accepted and no further communication is needed in order to deliver the message.

The PPG SHOULD carry out the registration procedure when an active TCP connection has been established in order to
identify/authenticate the terminal and find out about its capabilities and preferences.

7.2.5.1 Registration

PPG initiated registration is accomplished by sending an HTTP OPTIONS [RFC2616] request from the PPG to the terminal,
using /wappush as Request-URI and an empty HOST header field. The X-Wap-Push-ProvURL header MAY be
included in the request. See section 7.2.5.4 for further details.

The response from the terminal MUST, unless it rejects the request (e.g. if authentication is required), include the following
headers if no X-Wap-CPITag header is conveyed from the PPG to the terminal:

• CPI headers (optional headers specified in section 7.2.5.4)

• the X-Wap-CPITag header

These headers MUST also be included in the response if a CPITag is conveyed from the PPG to the terminal and it does not
match the terminal's current CPITag.

The assumed CPITag can be conveyed from the PPG to the terminal using either of these methods:

• include the CPITag in an SIR

• include the CPITag in the X-Wap-CPITag header in the OPTIONS request

The response to the OPTIONS request contains an HTTP [RFC2616] status code that reflects the outcome of that request
(accepted, authentication required etc.). The X-Wap-Push-Status header (see section 7.4.2.1), indicating the outcome of
the registration request, MUST be included in the response to the OPTIONS request.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 24 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

The figure below shows an example of the procedure described above.

 HTTP OPTIONS, X-Wap-CPITag = X

204 No Content, X-Wap-CPITag = Y, CPI Headers
X-Wap-Push-Status = 501, Accepted, CPITag mismatch

Terminal PPG

CPITag = X

CPITag = Y

HTTP OPTIONS, X-Wap-CPITag = Y

204 No Content
X-Wap-Push-Status = 500, Accepted, CPITag match

CPITag = Y

CPITag = Y

Figure 7: Registration (OPTIONS) request example

7.2.5.2 Registration Validation

This method is used in conjunction with delivery of push content between the PPG and the terminal using the HTTP POST
method (see section 7.4), and is primarily used when the PPG assumes that the registration context it maintains contains the
terminal's current CPI. The method can only be used when the PPG knows the coupling between the identity and the IP
address of the terminal it is sending the POST request to, for example, if the PPG has performed the registration procedure, if
static IP addresses are used, or if the PPG is able to communicate with some network entity that provides the coupling.

The terminal finds out if the PPG is aware of its current CPI by comparing its own CPITag with the assumed CPITag
conveyed from the PPG to the terminal. The assumed CPITag can be conveyed using either of these methods:

• include the CPITag in an SIR

• include the CPITag in the X-Wap-CPITag header in the POST request

If the CPITag assumed by the PPG matches the terminal's current CPITag, the terminal MUST attempt to deliver the push
content to the addressed application and respond as described in section 7.4.2, and the X-Wap-CPITag header MUST NOT
be included in the POST response.

In contrast, if the assumed CPITag does not match the terminal's current CPITag, the terminal SHOULD silently discard the
message body of the request (i.e. the push content). If the message body is discarded, the terminal MUST convey its CPITag
to the PPG by including the X-Wap-CPITag header in the response. If it accepts the message body it SHOULD include the
X-Wap-CPITag header in the response (see also the introduction to section 7.2.5 for additional explanation on CPI
information lookup using the CPITag during registration validation).

If the assumed CPITag is not conveyed to the terminal, the terminal SHOULD accept the message body. If the message body
is discarded the terminal MUST convey its CPITag to the PPG by including the X-Wap-CPITag header in the response. If
it accepts the message body it SHOULD NOT include the X-Wap-CPITag header in the response.

The response to the POST request contains an HTTP [RFC2616] status code that reflects the outcome of that request
(accepted, authentication required etc.). The X-Wap-Push-Status header (see section 8.4.2.1), indicating the outcome of
the push/validation request, MUST be included in the response to the POST request.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 25 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

The figure below shows an example of the procedure described above.

 HTTP POST, X-Wap-CPITag = X, push content

204 No Content, X-Wap-CPITag = Y
X-Wap-Push-Status = 256 Rejected, CPITag mismatch

Terminal PPG

CPITag = X

CPITag = Y

HTTP POST, X-Wap-CPITag = Y, push content

204 No Content
X-Wap-Push-Status = 400, Accepted, CPITag match

CPITag = Y

Push content
discarded

Push content
accepted

CPI with
CPITag = Y
available?

CPI
Storage

Yes
No

Registration
Request

Figure 8: Registration validation (POST) example

7.2.5.3 The X-Wap-CPITag Header

As mentioned above, a specific CPITag value is used to represent a specific set of CPI header values. Each time one or more
CPI headers change the terminal MUST re-compute the CPITag before it is conveyed to the PPG. The CPITag is carried in
the X-Wap-CPITag header discussed in section 7.2.5.1 and 7.2.5.2. The ABNF [RFC2234] format of the header is:

X-Wap-CPITag = "X-Wap-CPITag" ":" CPItag
CPItag = 4*OCTET

The CPItag value is a four octet truncated hash of the CPI, and MUST be computed as follows:

• concatenate all CPI header (see section 7.2.5.5) values that are sent in the response

• apply a hashing algorithm that generates at least a four octet hash on the concatenated value. The SHA-1 [SHA]
algorithm is RECOMMENDED.

• use the first four octets of the output

• generate the CPITag by base64-encoding these four octets

This specification does not specify how the CPI header concatenation should be done. However, a terminal SHOULD ensure
that it is done in a consistent manner so that a certain set of CPI header values always results in the same concatenated value
(and thereby the same CPITag). For example, if CPITag1 represents the terminal's CPI when English is selected as the most
preferred language, and the user switches to Swedish and thereby computes a new CPITag, a succeeding CPITag
computation should result in CPITag1 if the user chooses to switch back to English (assuming all other CPI headers remaining
unaltered).

7.2.5.4 The X-Wap-Push-ProvURL Header

If the PO-TCP method was used to establish the active TCP connection, and the terminal supports WAP Provisioning
[ProvArch], this OPTIONAL request header provides the PPG with a means to inform the terminal about which
configuration context it should use (to obtain the appropriate Terminal-ID, authorization credentials, etc.) by indicating the
configuration context's ProvURL [ProvCont].

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 26 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

A ProvURL value can be empty, which is indicated by including an empty X-Wap-Push-ProvURL header in the request.
A terminal MUST NOT interpret the absence of the X-Wap-Push-ProvURL header as if a configuration context with an
empty ProvURL value is indicated. If the header is absent it is left to the discretion of the terminal to select a suitable
configuration context, or use other means to obtain appropriate configuration parameters.

The X-Wap-Push-ProvURL header does only need to be included in the first HTTP request sent towards the terminal
within the scope of a specific active TCP connection established using the PO-TCP method. This allows the terminal to
associate that active TCP connection with a certain ProvURL until the connection is closed.

The ABNF [RFC2234] format of the header is:

X-Wap-Push-ProvURL = "X-Wap-Push-ProvURL" ":" ProvU RL
; ProvURL as defined in [ProvCont]

If the X-Wap-Push-ProvURL header is present, and the terminal supports WAP Provisioning, the following rules apply:

• If the specified ProvURL is non-empty and it matches one of the terminal's configuration contexts, the matching
configuration context MUST be used. If no match can be found, the terminal MUST reject the request and return the
appropriate status code (257 or 302) in the X-Wap-Push-Status header (see section 7.4.2.1).

• If the header is empty, it is left to the discretion of the terminal to select the appropriate configuration context among
those having an empty ProvURL. If the terminal cannot find a provisioning context with an empty ProvURL , the
terminal MUST reject the request and return the appropriate status code (257 or 302) in the
X-Wap-Push-Status header (see section 7.4.2.1).

If the X-Wap-Push-ProvURL header is present, and the terminal does not support WAP Provisioning, the terminal MAY
reject the request and return the appropriate status code (257 or 302) in the X-Wap-Push-Status header (see section
7.4.2.1).

7.2.5.5 CPI headers

The following sub-sections define the headers that are used to convey the terminal's CPI to the PPG as described in previous
sections. All headers are OPTIONAL, and a terminal MAY include other headers among its CPI headers if it so wishes. If
any of the CPI headers listed in the following sub-sections are not present in the response to a registration request, the PPG
MUST assume their default values.

All header format definitions are expressed using ABNF [RFC2234].

7.2.5.5.1 X-Wap-Push-Accept

Header Name: X-Wap-Push-Accept

Description: List of supported content types that can be carried inside the application/http entity body (see
section 7.4.1)

Format: X-Wap-Push-Accept = "X-Wap-Push-Accept" ":" Accept- value
; Accept-value identical with HTTP's Accept header value
; [RFC2616]

Default: application/vnd.wap.sia, text/vnd.wap.si

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 27 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

7.2.5.5.2 X-Wap-Push-Accept-Charset

Header Name: X-Wap-Push-Accept-Charset

Description: List of supported content types character sets

Format: X-Wap-Push-Accept-Charset = "X-Wap-Push-Accept-Char set"
 ":" Charset-value
; Charset-value identical with HTTP's Accept-Charset header
; value [RFC2616]

Default: UTF-8

7.2.5.5.3 X-Wap-Push-Accept-Encoding

Header Name: X-Wap-Push-Accept-Encoding

Description: List of supported transfer encoding methods

Format: X-Wap-Push-Accept-Encoding = "X-Wap-Push-Accept-Enc oding"
 ":" Encoding-value
; Encoding-value identical with HTTP's Accept-Encoding header
; value [RFC2616]

Default: identity

7.2.5.5.4 X-Wap-Push-Accept-Language

Header Name: X-Wap-Push-Accept-Language

Description: List of supported languages

Format: X-Wap-Push-Accept-Language = "X-Wap-Push-Accept-Lan guage"
 ":" Language-value
; Language-value identical with HTTP's Accept-Language header
; value [RFC2616]

Default: *

7.2.5.5.5 X-Wap-Push-Accept-AppID

Header Name: X-Wap-Push-Accept-AppID

Description: List of applications the terminal supports, where each item in the list is an application-id in
absoluteURI format as specified in [PushMsg]. A wildcard ("* ") may be used to indicate
support for any application (e.g. due to privacy concerns).

Format: X-Wap-Push-Accept-AppID = "X-Wap-Push-Accept-AppID"
 ":" (AppIDlist | "*")
AppIDlist = absoluteURI *("," SP absoluteURI)

Default: *

7.2.5.5.6 X-Wap-Push-MsgSize

Header Name: X-Wap-Push-MaxMsgSize

Description: Maximum size of a push message that the terminal can handle. Value is number of bytes.

Format: X-Wap-Push-MaxMsgSize = "X-Wap-Push-MaxMsgSize" ":" *DIGIT

Default: 1400

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 28 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

7.2.5.5.7 X-Wap-Push-Accept-MaxPushReq

Header Name: X-Wap-Push-Accept-MaxPushReq

Description: Maximum number of outstanding push requests that the terminal can handle

Format: X-Wap-Push-Accept-MaxPushReq = "X-Wap-Push-Accept-M axPushReq"
 ":" *DIGIT

Default: 1

7.2.5.5.8 X-Wap-Push-User-Agent Header

The X-Wap-Push-User-Agent response header field contains information about the server responding to the OPTIONS
request originated by the PPG. This is for statistical purposes, the tracing of protocol violations, and the automated
recognition of user agents for the sake of tailoring POST requests in order to avoid particular Terminal limitations in
conjunction with CPI headers.

This header SHOULD be included in all OPTIONS responses to the PPG. Furthermore, if included, the field value MUST
NOT be empty. The field can contain multiple product tokens and comments identifying the agent and any sub products that
form a significant part of the user agent.

By convention, the product tokens are listed in order of their significance for identifying the application, [RFC2616].

 X-Wap-Push-User-Agent = "X-Wap-Push-User-Agent" ": " 1*(product | comment)

Example:

X-Wap-Push-User-Agent: make/model

Note: the definition of user agent in this case is not the same as application identifier.

7.2.5.6 CPI and User Agent Profile

The X-Wap-Profile and X-WAP-Profile-Diff headers [UAPROF] MAY be included in the OPTIONS response. The profile
referenced by these headers should be resolved as per the resolution rules specified in section 6.4 of [UAProf]. If, in the
resolved profile, a push component exists its attributes should used when establishing the clients CPI. However attributes in
the resolved profile MUST NOT supersede the specific CPI headers, defined in section 7.2.5.5, where available (as per
section 8.1.2.3 of [UAProf]).

The headers (and associated attribute values) used to convey user agent profile information [UAProf] MUST NOT be used in
the calculation of client’s CPITag value, as defined in section 7.2.5.1.

7.2.6 Mutual Terminal/PPG Identification and Authentication

When an active TCP connection has been established (see section 7.2.4.1), the PPG SHOULD identify the terminal to ensure
that pushed content is forwarded to the intended terminal. The terminal can also be authenticated if requested by the PPG.

A PPG uses a terminal's Terminal-ID to uniquely identify that terminal. The means for conveying the Terminal-ID between
the terminal and the PPG are described in the subsequent sections, and it is formatted according to the following rules:

• If the terminal supports WAP Provisioning [ProvArch] it MUST use the value of the PXAUTH-ID parameter
[ProvCont] (or the fallback value if the parameter is missing) if it is able to select the appropriate PXLOGICAL in
the configuration context used.

• If the terminal does not support WAP Provisioning, or if it fails to select the appropriate PXLOGICAL, the
Terminal-ID MUST be formatted in accordance with [ClientID].

Similarly the terminal SHOULD identify the PPG to ensure that content from non-desirable PPGs can be rejected.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 29 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

7.2.6.1 Un-authenticated Identification

The terminal MUST include its Terminal-ID in the response to the OPTIONS request (see section 7.2.5.1) using the
X-Wap-Terminal-Id header (see section 7.2.6.1.1), unless:

• authentication has been requested by the PPG using the X-Wap-Authenticate header, implying that the
Terminal-ID will be conveyed as part of the X-Wap-Authorization header (as described in section 7.2.6.2.2),
or

• the terminal requests the PPG to authenticate itself as defined in section 7.2.6.2

For PPG identification purposes the terminal MAY use the remote address of the active TCP connection.

7.2.6.1.1 X-Wap-Terminal-Id Header

This general header is used to carry the terminal's Terminal-ID. The ABNF [RFC2234] format of this header is:

X-Wap-Terminal-Id = "X-Wap-Terminal-Id" ":" Termina l-ID
; Terminal-ID, a terminal identifier that MUST be f ormatted
; as defined in section 7.2.6

7.2.6.2 Authenticated Identification

The authentication schemes described in this section allow the PPG to be authenticated by the terminal and vice versa. The
terminal (acting as an HTTP server) uses the mechanisms defined in [RFC2617] to authenticate the PPG (acting as an HTTP
client), while similar methods are defined by this specification to allow the PPG to authenticate the terminal (RFC2617 only
specifies how an HTTP client can be authenticated by an HTTP server).

7.2.6.2.1 PPG Authentication

For PPG authentication purposes, both the terminal and the PPG MUST support the "basic" authentication scheme, and MAY
support the "digest" authentication scheme, as defined in [RFC2617].

The restrictions defined in section 0 apply to the use of the WWW-Authenticate header, with the following exception:

• realm MUST be the appropriate Terminal-ID value of the terminal requesting authentication

• domain MUST be /wappush

Further, the restrictions defined in section 7.2.6.2.2.2 apply to the use of the Authorization header with the following
exceptions:

• digest-URI and Method are used as specified in [RFC2617]

• username MUST include the identity of the PPG, formatted as the PX-LOGICAL.PROXY-ID parameter defined
in [ProvCont]

The terminal MAY use status code 401 "Unauthorized" to request the PPG to supply, or re-send, its authorisation credentials.

7.2.6.2.2 Terminal Authentication

Terminal authentication is achieved by a mechanism similar to that described in [RFC2617], but modified so it can be used to
authenticate an HTTP server instead of an HTTP client, and just like [RFC2617] it provides a means for both "basic" and
"digest" authentication. Both the terminal and the PPG MUST support the "basic" authentication scheme, and MAY support
the "digest" authentication scheme.

Challenges and credentials are carried between the PPG and the terminal using the following two HTTP headers (defined in
subsequent sections):

• X-Wap-Authenticate : used by the PPG to request terminal authentication and carry the challenge

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 30 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

• X-Wap-Authorization : used by the terminal to carry its credentials.

To request authentication from the terminal, the PPG includes the X-Wap-Authenticate header in a request sent to the
terminal. The terminal responds with its authorization credentials in the X-Wap-Authorization header if it accepts the
challenge. The terminal MUST NOT include the X-Wap-Authorization header in a response unless the X-
Wap-Authenticate header was present in the corresponding request.

If the terminal does not accept the challenge sent by the PPG it MUST respond with status code 412 "Precondition Failed"
and include an auth-param directive [RFC2617] in the X-Wap-Authorization header with the following ABNF
[ABNF] definition:

x-wap-auth-status = "x-wap-auth-status" "=" x-wap-a uth-status-value

x-wap-auth-status-value = "failed_retry" | "failed_ noretry"

The token "failed_retry " indicates that the PPG MAY retry the request by sending the X-Wap-Authenticate
header anew. If the field is set to "failed_noretry ", the PPG MUST NOT re-send the X-Wap-Authenticate
header.

If the PPG does not accept the credentials supplied by the terminal it MUST re-send the request and include the
X-Wap-Authenticate header with the x-wap-auth-status field value set to the token "failed_retry " or
"failed_noretry ". The token "failed_retry " indicates that the terminal MUST either retry to authenticate itself by
re-sending the X-Wap-Authorization header or terminate the connection with the PPG. If the field is set to
"failed_noretry ", the terminal MUST terminate the connection.

7.2.6.2.2.1. X-Wap-Authenticate Header

The PPG uses the X-Wap-Authenticate header to request authentication from a terminal and carry the challenge. The
semantics of this header are as defined in [RFC2616] & [RFC2617] for the WWW-Authenticate header except that it is
included in requests instead of responses. The following restrictions apply:

• realm MUST include the identity of the PPG, formatted as the PX-LOGICAL.PROXY-ID parameter defined in
[ProvCont]

• domain MUST NOT be used

• stale MUST NOT be used

• algorithm MUST NOT be used

• qop-options MUST NOT be used

• algorithm MUST be "SHA-1"

The nonce parameter should be uniquely generated each time the X-Wap-Authenticate header is sent.

7.2.6.2.2.2. X-Wap-Authorization Header

The terminal uses the X-Wap-Authorization header to carry the authentication response back to the PPG. The
semantics of this header is as defined in [RFC2616] and [RFC2617] for the Authorization header except that it is
included in responses instead of requests. The following restrictions apply:

• username MUST include the appropriate Terminal-ID value of the terminal being authenticated

• digest-URI MUST be /wappush

• algorithm MUST NOT be used

• cnonce MUST NOT be used

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 31 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

• message-qop MUST NOT be used

• nonce-count MUST NOT be used

• algorithm MUST be "SHA-1"

The computing of the request-digest value is done as defined in [RFC2617] except for the following:

• SHA-1 MUST be the hash algorithm used

• auth MUST be the quality of protection used

• Method in A2 MUST be the method used in the request containing the X-Wap-Authenticate header

• digest-uri-value in A2 MUST be the request-uri [RFC2616] (in this case /wappush) used in the
request containing the X-Wap-Authenticate header

7.2.6.2.3 Examples

A PPG desiring to authenticate a terminal using "digest" authentication, when an active TCP connection has been established,
sends the X-Wap-Authenticate header in the OPTIONS command request and analyses the terminal credentials part of
the X-Wap-Authorization header in the OPTIONS command response.

A terminal desiring to authenticate a PPG responds with status code 401 and includes the WWW-Authenticate header in
the OPTIONS command response and analyses the PPG credentials part of the Authorization header, when/if the PPG
sends the request anew, before sending the response to the last OPTIONS request.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 32 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

The figure below illustrates the procedure when the terminal accepts an unauthenticated registration request:

 HTTP OPTIONS, X-Wap-Authenticate

204 No Content, X-Wap-Authorization, OPTIONS response
X-Wap-Push-Status = 500/501 Accepted

Terminal PPG

Terminal
authenticated

HTTP POST, push content

204 No Content
X-Wap-Push-Status = 400/401 Accepted

Figure 9: Terminal accepts unauthenticated registration request

As described above, the terminal may choose to request the PPG to be authenticated before accepting the registration request.
The procedure would then be as illustrated in the figure below:

 HTTP OPTIONS, X-Wap-Authenticate

401 Unauthorized, X-Wap-Authorization, WWW-Authenticate
X-Wap-Push-Status = 300 Rejected

Terminal PPG

Terminal
authenticated

HTTP OPTIONS, Authorization

204 No Content, OPTIONS response
X-Wap-Push-Status = 500/501 Accepted

PPG
authenticated

HTTP POST, push content

204 No Content
X-Wap-Push-Status = 400/401 Accepted

Figure 10: Terminal requests PPG authentication prior registration

In the case of "basic" authentication, the same procedure can be used. It is then however also possible for the PPG to include
the Authorization header without first receiving the WWW-Authenticate header (if the PPG includes it in the initial
OPTIONS, the extra roundtrip where the terminal requests the PPG to authenticate itself can be avoided) as illustrated in the
figure below.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 33 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

 HTTP OPTIONS, Authorization, X-Wap-Authenticate

204 No Content, X-Wap-Authorization, OPTIONS response
X-Wap-Push-Status = 500/501 Accepted

Terminal PPG

Terminal
authenticated

HTTP POST, push content

204 No Content
X-Wap-Push-Status = 400/401 Accepted

PPG
authenticated

Figure 11: Use of "Basic" authentication

The authentication scheme is of course not restricted to be used only with the first HTTP requests sent to the terminal when
an active TCP connection has been established, it may be used at any time and with any method if desired.

7.3 Application Addressing
The PPG MUST address the terminal push application for any push request using the /wappush abs_path as the URI of the
POST request (see section 7.4).

The terminal MUST use the X-Wap-Application-Id value to route the push request to the intended application. When
no X-Wap-Application-Id header is provided, the terminal MUST assume that the intended application is the WML
user agent.

7.4 Content Push
Push messages are delivered to the terminal using the HTTP POST method [RFC2616]. This section defines the format for
the POST request and its corresponding response.

7.4.1 POST Request Format

The message body of the POST request, using /wappush as Request-URI and an empty HOST header field, carries the
content and headers to be delivered to the addressed application (see section 7.3 for details about application addressing)
enclosed in an application/http response entity body [RFC2616]. The entity headers that may be used in the application/http
entity body are defined in [PushMsg]. These headers are delivered end-to-end, i.e. from PI to terminal. The status-line in the
application/http entity body contains a status code legal for an HTTP response. The X-Wap-Push-ProvURL header MAY
be included in the request. See section 7.2.5.4 for further details.

Request headers, besides those specified in this specification, are defined in [RFC2616].

The X-Wap-Push-Info header MAY be included in the POST request to convey push specific information to the
terminal. It is described in the section below.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 34 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

7.4.1.1 The X-Wap-Push-Info Header

The X-Wap-Push-Info header is a request header used in a POST request sent by the PPG to provide the terminal with
the following indications regarding each particular push transaction. It can carry the following attribute tokens:

• authenticated : used as the Authenticated Flag described in section 6.2.4. The Initiator URI mentioned in that
section is represented by the X-Wap-Initiator-URI defined in [PushMsg].

• trusted : used as the Trusted Flag as described in section 6.2.5.

• last : used as the Last Flag as described in section 6.2.6.

• response : indicates that a message body MAY be included in the response to the POST request. The terminal
MUST NOT include any message body in the response if this token is not present.

The ABNF [RFC2234] format is:

X-Wap-Push-Info = "X-Wap-Push-Info" ":" token *("," token)
token = ("authenticated" | "trusted" | "last" | "re sponse")

Unrecognised token values MUST be ignored by the terminal.

7.4.2 POST Response Format

The response to the HTTP POST method MUST contain a status line reflecting the outcome of the request. Status codes 200
and 204 are equivalent in the respect that they both indicate that the addressed terminal application has accepted the push
content for processing. Status code 204 "No Content" is used if the response does not contain a message body, and status
code 200 "OK" is used if a message body is included (the response MAY contain a message body if the PPG explicitly
permits it in the corresponding request as described in section 7.4.1.1 – however, neither the contents, nor the use, of the
message body is specified by this specification).

Other allowed status codes, reflecting the outcome of the HTTP POST request, are defined in [RFC2616]. The
X-Wap-Push-Status header (see section 7.4.2.1) MUST be included in the response to reflect the outcome of the push
submission.

Response headers, besides those specified in this specification, are defined in [RFC2616].

7.4.2.1 The X-Wap-Push-Status Header

The X-Wap-Push-Status header is used to indicate the outcome of a registration request or a push request, i.e. it is used
to convey statuses not pertaining to HTTP. The header MUST be included in responses to all registration and push requests.
The ABNF [RFC2234] format is:

X-Wap-Push-Status = "X-Wap-Push-Status" ":" Status- Line
Status-Line = Status-Code [SP Reason-Phrase]
Status-Code = 3DIGIT
Reason-Phrase = *VCHAR
; Status-Code values are defined in the table below
; Reason-Phrase is an appropriate textual phrase (o ptional)
; Example: X-Wap-Push-Status: 237 Resource Shortage
; Status-Code 234-299: Push request rejected
; Status-Code 300-399: Registration request rejecte d
; Status-Code 400-499: Push request accepted
; Status-Code 500-599: Registration request accepte d
; Status-Code 600-699: General rejection reasons

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 35 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

The following Status-Code values are allowed in the X-Wap-Push-Status header:

Status Code HTTP Method Retries Allowed1 Description
234 POST Yes Push request rejected, see USERREQ in section 6.1.3.3
235 POST No Push request rejected, see USERRFS in section 6.1.3.3
236 POST No Push request rejected, see USERPND in section 6.1.3.3
237 POST Yes Push request rejected, see USERDCR in section 6.1.3.3
238 POST No Push request rejected, see USERDCU in section 6.1.3.3
256 POST No Push request rejected, CPITag not present or

mismatching
257 POST No Push request rejected, matching provisioning context not

found
300 OPTIONS Yes Registration request rejected, retries allowed
301 OPTIONS No Registration request rejected, no retries
302 OPTIONS No Registration request rejected, matching provisioning

context not found
400 POST N/A Push request accepted, CPITag not present or matching
401 POST N/A Push request accepted, CPITag mismatch
500 OPTIONS N/A Registration request accepted, CPITag matching
501 OPTIONS N/A Registration request accepted, CPITag not present or

mismatching
600 ∗2 N/A Request rejected, the terminal does not support the

OTA-HTTP version indicated by the PPG
1 Indicates if the PPG may re-send the request without changes
2 Any method

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 36 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

7.4.3 Example

Below is an example of a push request containing a Service Indication that allows the user to invoke his/her email service:

POST /wappush HTTP/1.1
Host:
Date: Tue, 31 Jul 2001 10:13:05 GMT
Content-Type: application/http
Content-Length: 504
X-Wap-Push-OTA-Version: 1.0

HTTP/1.1 200 OK
Date: Tue, 31 Jul 2001 10:13:00 GMT
Last-modified: Tue, 31 Jul 2001 10:13:00 GMT
Content-Language: en
Content-Length: 268
Content-Type: text/vnd.wap.si
X-Wap-Application-Id: x-wap-application:wml.ua

<?xml version="1.0"?>
 <!DOCTYPE si PUBLIC "-//WAPFORUM//DTD SI 1.0// EN"
 "http://www.wapforum.org/DTD/si.d td">
<si>
 <indication href="http://www.xyz.com/email/123/abc .wml"
 created="2001-07-31T10:13:00Z"
 si-expires="2001-08-07T10:13:00Z">You have 4
new emails</indication>
</si>

If the terminal accepts the request, the response would look like:

HTTP/1.1 204 No Content
X-Wap-Push-Status: 400 Accepted

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 37 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

7.5 Version Control
The OTA protocol over HTTP provides a simple mechanism for protocol version discovery by using a <major>.<minor>
numbering scheme. The <major> and <minor> numbers should be interpreted as integer values, implying that e.g. 3.5 is a
lower version than 3.12. A star (*) MAY be used as <minor> version to indicate support (or acceptance) for all <minor>
versions for a given <major> version.

The <minor> number is incremented when the newer version still can be used to communicate with a party (PPG/terminal)
supporting a lower <minor> version with identical <major> version, although optional features might not work.

The <major> version is incremented when the protocol is changed in a manner that the new version cannot be used with the
current version. Two parties should not expect to be able to communicate using protocols with different <major> version
numbers.

The version numbers supported are conveyed using the X-Wap-Push-OTA-Version header. The ABNF [RFC2234]
format is:

X-Wap-Push-OTA-Version: "X-Wap-Push-OTA-Version " " :" supported-versions
supported-versions = version-number *("," version-n umber)
version-number = *DIGIT "." ((*DIGIT) / "*")
; Example: X-Wap-Push-OTA-Version:1.0,1.3,2.*,3.4

The version numbers are listed in order of preference, with the most preferred first.

The X-Wap-Push-OTA-Version header MUST be included in an HTTP response if it was included in the corresponding
request. The header MUST be present in the first HTTP request sent over an active TCP connection, and MAY be present in
subsequent requests.

If the terminal is not willing to accept any of the versions indicated by the PPG, the terminal MUST include the
X-Wap-Push-Status header with the value 600 and an appropriate textual message (e.g. "Version Not Supported") in the
response.

The version specified by this specification is 1.0.

7.6 Bearer Indication
The terminal might choose to register with a PPG using different bearers. For example, the SIR mechanism provides a means
for the PPG to advertise different desired bearers to be used by the terminal when establishing IP connectivity with the
network (see section 8.1).

The registration mechanism provides a means for the client to report which bearer it used when it established IP connectivity
as described below. This information MAY be used by the PPG to perform bearer selection (e.g. delivery of some bulky
content might not be feasible over the most constrained bearers).

The terminal MUST indicate the bearer used during registration by including the X-Wap-Bearer-Indication header in
the response to the OPTIONS method (see section 7.2.5.1).

7.6.1 X-Wap-Bearer-Indication Header

The terminal uses the X-Wap-Bearer-Indication header to indicate the bearer used for a particular registration. The
ABNF [RFC2234] format of this header is:

X-Wap-Bearer-Indication = "X-Wap-Bearer-Indication" ":" bearer-type
Bearer-type = 2HEXDIG
; Bearer-type as defined in WDP

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 38 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

8. Session Initiation Request
Since content push is asynchronous by nature, it is possible that no push session exists (OTA-WSP), that no active TCP
connection has been established (OTA-HTTP), or that the desired bearer is not utilized when content is about to be pushed
from the PPG to the terminal. The Session Initiation Application (SIA) residing in the terminal allows a PPG to request a
terminal to establish a push session or an active TCP connection, using a specific bearer. The process of sending SIA content
to a mobile terminal is referred to as Session Initiation Request (SIR) independent of the protocol variant to be used. An SIR
can be delivered using either connectionless or connection-oriented push.

The SIA content type contains separate lists of contact points for OTA-WSP and OTA-HTTP. This implies that the originator
of an SIR (usually a PPG) can choose to indicate either of them or both. The two lists of contact points are to be considered
as alternatives, and hence the terminal MUST only use one of them (that is, one protocol variant).

If contact points are included for only one protocol variant, and the terminal does not support that variant, the terminal MUST
NOT attempt to use another protocol variant when contacting any of those contact points.

If an SIR contains lists of contact points for both OTA-WSP and OTA-HTTP, it is left to the terminal’s discretion to decide
which protocol variant it shall use.

The subsequent sections describe how a SIR is carried out in OTA-HTTP and in OTA-WSP respectively.

8.1 SIR in OTA-HTTP

8.1.1 Session Initiation Application

SIA MUST be supported both by terminals and PPGs implementing OTA-HTTP.

8.1.2 PPG Procedure

A PPG can instruct a terminal to establish an active TCP connection by sending an SIR to the SIA in the terminal, indicating
contact points for OTA-HTTP. The SIA is addressed by its registered Application-ID [OMNA].

8.1.3 Terminal Procedure

When/if acting upon an SIR, the terminal MUST take the following actions:

• Establish IP connectivity with the network, if not already done

• Proceed with the TO-TCP connection procedure described in section 7.2.4.1.1

If multiple contact points (one or more PPGs) are included in the SIR, the terminal SHOULD establish active TCP
connections towards each of those contact points.

If the terminal supports OTA-HTTP-TLS it MUST ensure that a TLS session is established on the active TCP connection it
creates towards the PPG, if the secure transport service is requested (by indicating the secure registered port, or a provisioned
port known to support TLS, in the SIR).

8.2 SIR in OTA-WSP

8.2.1 Session Initiation Application

SIA MUST be supported both by a terminal and a PPG implementing connection-oriented push using OTA-WSP.

8.2.2 PPG Procedure

A PPG can instruct a terminal to establish one or more push sessions by sending an SIR to the SIA in the client, indicating
contact points for OTA-WSP. The SIA is addressed by its registered Application-ID [OMNA].

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 39 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

8.2.3 Terminal Procedure

When/if acting upon an SIR, the terminal MUST take the following actions:

• Establish connectivity with the network, if not already done

• Establish push sessions towards the contact points in the SIR

If multiple contact points (one or more PPGs) are included in the SIR, the terminal SHOULD establish push sessions towards
each contact point indicating its subset of supported Application-IDs specified in the SIR. However, the terminal MAY
indicate (e.g. due to privacy concerns) that it accepts any Application-ID. It is the responsibility of the client to clean up the
stale push sessions, if any.

The terminal MUST ensure that a WTLS secure connection exists before it creates the new push session, if the secure
transport service is requested (by indicating the secure registered port, or a provisioned port known to support WTLS, in the
SIR).

8.3 Security Considerations
To protect against denial of service attacks, the terminal SHOULD implement a lockout timer. If the terminal receives any
additional SIRs during the lockout interval, it should defer processing or discard them until the timer expires. If the requested
push session(s) is successfully established (OTA-WSP), or if the active TCP connection(s) is successfully established
(OTA-HTTP), the lockout timer SHOULD be reset. The value of the lockout timer interval is implementation specific.

To protect against spoofing, the terminal SHOULD validate the SIR by comparing the source address of the PDU that carries
the SIA content with a pre-existing list of authorised PPGs. The SIR SHOULD be ignored if the validation fails.

The above measures are applicable if the SIR is received on a non-secure port. If a secure port is used, these measures are
generally not necessary.

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 40 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

8.4 SIA Content Based Protocol Data Unit
The content type, application/vnd.wap.sia , is defined and encoded as follows:

 Field Name Type
Common fields Version uint8*

AppIdListLen uintvar*; number of octets* for Application-ID List field
Application-ID List AppIdListLen octets

OTA-WSP
specific fields

ContactPointsLen WSP uintvar; number of octets for Contact Points WSP field
Contact Points WSP ContactPointsLen octets

Fields for other
protocols

ContactPointsLen uintvar; number of octets for Contact Points field
Contact Points ContactPointsLen octets
ProtOptsLen uintvar; number of uintvar encoded octets for ProtOpts field
ProtOpts ProtOptsLen uintvar

ProvURL fields ProvURLLen uintvar; number of octets for ProvURLfield
ProvURL ProvURLLen octets

CPITag fields CPITagLen uintvar; number of CPITags (each 4*octet) in the CPITag field
CPITag CPITagLen 4*octet

* As defined in [WSP]

The Version field indicates the version of SIA content type. For this specification version, its value is 1. Future versions of
SIA should only add new fields at the end of this content type, if such are needed, to ensure maximum backward
compatibility. A terminal MUST accept version numbers higher than 1, and ignore unknown fields (i.e. fields included in
later versions). To ensure that a terminal implementing connection-oriented push using OTA-WSP will be compatible with
older PPGs (using version 0), such terminals MUST also support SIA version 0. Version 0 and version 1 are identical with
respect to the common and WSP specific fields, except for the version number.

AppIdListLen, ContactPointsLen WSP, ContactPointsLen, ProtOptsLen, ProvURLLen and CPITagLen indicate the length
of the following field (a length of zero is allowed). Each length is encoded using the variable-length uintvar integer format.

The Application-ID List field contains a list of Application-IDs to which the PPG wishes to send Push messages. The
terminal, in turn, indicates the subset of supported Application-IDs when a push session is established (OTA-WSP), or when
a registration takes place (OTA-HTTP), by sending accept-application headers [WSP]. See sections 8.1.3 and 8.2.3
for details on how to use this field when multiple contact points are specified.

The Contact Points WSP field contains a list of server addresses the client should contact to establish a WSP push session
(OTA-WSP). Each address in the field uses the AddressType as defined in [WSP].

The Contact Points field contains a list of PPG addresses the terminal should contact using another protocol than OTA-WSP
(currently only OTA-HTTP). In the case of OTA-HTTP, the terminal should establish an active TCP connection (or
connections) when contacting the PPG(s) using TO-TCP. Each address in the field uses the AddressType as defined in
[WSP].

The ProtOpts field contains a list of identifiers (each represented using a binary representation of its decimal value, encoded
as uintvar) that identify the protocol, and its associated options, to be used when the terminal contacts the contact points
specified in the Contact Points field. The first identifier identifies the protocol to be used when contacting the first contact
point, the second identifier identifies the protocol to be used when contacting the second contact point, and so on. If the
number of listed protocol identifiers does not match the number of contact points specified in the Contact Points field, the
first protocol identifier MUST be used for all contact points. If the Protocol field is empty, or omitted, the default protocol
identifier is 0 (zero). If the terminal receives an unknown identifier it MUST NOT attempt to contact the associated contact
point(s).

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 41 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

Allowed protocol identifiers are:

Identifier Description
0 OTA-HTTP, no CPITag present
1 OTA-HTTP, CPITag present

OMA reserves identifiers zero through 255 for internal use, while identifiers 256 through 16383 are available for private
assignment through OMNA [OMNA].

The ProvURL field contains the ProvURL [ProvCont] parameter value assigned to the configuration context [ProvCont] that
the terminal should use when contacting the contact point(s) listed in the SIR. The following rules apply:

• If the terminal supports WAP Provisioning:

- If the ProvURL field is non-empty and it matches one of the terminal's configuration contexts, the matching
configuration context MUST be used.

- If the ProvURL field is empty, it is left to the discretion of the terminal to select the appropriate
configuration context among those having an empty ProvURL.

- If either action listed in the two above bullets fails, it is left to the discretion of the terminal if and how to
contact the contact points specified in the SIR.

• If the terminal does not support WAP Provisioning, this field can be ignored.

If the ProvURLLen field indicates lengths one through four octets, the value of the ProvURL field MUST contain a truncated
hash of the ProvURL calculated using SHA-1 [SHA]. A ProvURLLen value of one indicates that the first byte of the output
is used, a ProvURLLen of two indicates that the first two bytes of the output is used, and so on. ProvURLLen values above
four indicate that the ProvURL is represented in its full textual representation (ASCII encoded).

The CPITag field is used to convey a list of CPITags assumed to be valid by the PPG. Each CPITag is represented by
the 4 octets (non-encoded, i.e. not encoded using base64) previously sent from the terminal to the PPG in the X-Wap-
CPITag header (see section 7.2.5.3). The first element in the list of CPITags is interlinked with the first contact point
specified in the Contact Points field for which the ProtOpts identifier indicates that the CPITag is present, the second
element in the list of CPITags is interlinked with the second contact point for which the ProtOpts identifier indicatesthat the
CPITag is present, and so on. If the number of listed CPITags does not match the number of contact points specified in the
Contact Points field, for which the ProtOpts identifier indicates that the CPITag is present, the first CPITag MUST be used
for all those contact points. If a ProtOpts identifier indicates that the CPITag is present, but the CPITag field is empty, the
terminal MUST handle the SIR as if the CPI is not known by the PPG to provide a reasonable level of tolerance towards
errors in the content.

Unused fields may be omitted only if other fields do not follow them, implying that a terminal MUST accept truncated SIRs.
This means, for example, that if the PPG does not wish to indicate an OTA-WSP Contact Point, the ContactPointsLen WSP
field MUST be present with a value of 0. On the other hand, if the PPG wishes to only indicate an OTA-WSP contact point,
the fields following the WSP specific fields may be omitted

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 42 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

Appendix A. Static Conformance Requirements (Normative)
The notation used in this appendix is specified in [IOPProc].

A.1 Client/Terminal Features
Item Function Reference Status Requirement
OTA-CL-C-001 Connectionless Push 5, 6.2.1 M WSP-CL-C-002 AND

WSP-CL-C-003 AND
WSP-CL-C-020 AND
WDP:MCF

OTA-CL-C-002 Non-secure Port for
connectionless push

6.2.1 M WDP-RP-C-001

OTA-CL-C-003 Secure Port for WTLS for
connectionless push

6.2.1 O OTA-CL-C-001 AND
WDP-RP-C-002 AND
WTLS:MCF AND
WTLS:WTLS-C-007

OTA-CO-C-001

Connection-oriented push 5 O OTA-CO-C-002 OR
OTA-CO-C-003

OTA-CO-C-002 Connection-Oriented Push
using OTA-WSP

6.2.2 O (OTA-WSP-C-001 OR
OTA-WSP-C-002) AND
(OTA-WSP-C-003 OR
OTA-WSP-C-004) AND
OTA-WSP-C-005

OTA-WSP-C-001 Connection-oriented Confirmed
Push

6.2.2 O WSP-CO-C-001 AND
WSP-CO-C-011 AND
WSP-CO-C-034

OTA-WSP-C-002 Connection-oriented
Unconfirmed Push

6.2.2 O WSP-CO-C-001 AND
WSP-CO-C-010

OTA-WSP-C-003 Use non-secure transport
service

6.2.2 O

OTA-WSP-C-004 Use secure transport service
with WTLS

6.2.2 O WTLS:MCF AND
WTLS: WTLS-C-007

OTA-WSP-C-005 SIA/SIR 8
8.2
8.4

O

OTA-WSP-C-006 Application Addressing 6.2.3 M

OTA-WSP-C-007 Application Dispatching 6.3.1 M

OTA-WSP-C-008 Initiator Authentication 6.2.4 O

OTA-WSP-C-009 Bearer Selection 6.2.6 O

OTA-WSP-C-010 Bearer Control 6.2.6 O

OTA-WSP-C-011 Security Considerations 8.3 O

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 43 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

OTA-CO-C-003 Connection-Oriented Push
using OTA-HTTP

7 O OTA-HTTP-C-001 AND
OTA-HTTP-C-002 AND
OTA-HTTP-C-005 AND
OTA-HTTP-C-006 AND
OTA-HTTP-C-007 AND
OTA-HTTP-C-009 AND
OTA-HTTP-C-010 AND
OTA-HTTP-C-011 AND
OTA-HTTP-C-012 AND
OTA-HTTP-C-013 AND
OTA-HTTP-C-015 AND
OTA-HTTP-C-016 AND
HTTP-C-S-001

OTA-HTTP-C-001 TO-TCP 7.2.4.1 O TCP:MCF

OTA-HTTP-C-002 PO-TCP 7.2.4.1 O TCP:MSF

OTA-HTTP-C-003 Secure (OTA-HTTP-TLS)
TO-TCP

7.2.4.1 O TLS:MCF

OTA-HTTP-C-004 Secure (OTA-HTTP-TLS)
PO-TCP

7.2.4.1 O TLS:MCF

OTA-HTTP-C-005 Registration 7.2.5
7.2.5.1

O

OTA-HTTP-C-006 Registration Validation 7.2.5
7.2.5.2

O

OTA-HTTP-C-007 Support Un-authenticated
Terminal Identification

7.2.6
7.2.6.1

O

OTA-HTTP-C-008 Support Un-authenticated PPG
Identification

7.2.6
7.2.6.1

O

OTA-HTTP-C-009 Support Authenticated Terminal
Identification

7.2.6
7.2.6.2

O

OTA-HTTP-C-010 Support Authenticated PPG
Identification

7.2.6
7.2.6.2

O

OTA-HTTP-C-011 Application Addressing 7.3 O

OTA-HTTP-C-012 Content Push 7.4 O

OTA-HTTP-C-013 Version Control 7.5 O

OTA-HTTP-C-014 Security Considerations 8.3 O

OTA-HTTP-C-015 Bearer Indication 7.6 O

OTA-HTTP-C-016 SIA/SIR 8
8.1
8.4

O

OTA-HTTP-C-017 Support for the
X-Wap-Push-ProvURL
header

7.2.5.4 O ProvCont-CB-C-001

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 44 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

A.2 Server/PPG Features
Item Function Reference Status Requirement
OTA-CL-S-001 Connectionless Push 5, 6.2.1 M WSP-CL-S-002 AND

WSP-CL-S-003 AND
WSP-CL-S-020 AND
WDP:MCF

OTA-CO-S-001

Connection-oriented push 5 O OTA-CO-S-002 OR
OTA-CO-S-003

OTA-CO-S-002 Connection-Oriented Push
using OTA-WSP

6.2.2 O (OTA-WSP-S-001 OR
OTA-WSP-S-002) AND
(OTA-WSP-S-003 OR
OTA-WSP-S-004) AND
OTA-WSP-S-005

OTA-WSP-S-001 Connection-oriented Confirmed
Push

6.2.2 O WSP-CO-S-001 AND
WSP-CO-S-011

OTA-WSP-S-002 Connection-oriented
Unconfirmed Push

6.2.2 O WSP-CO-S-001 AND
WSP-CO-S-010

OTA-WSP-S-003 Use non-secure transport
service

6.2.2 O WDP-RP-S-004

OTA-WSP-S-004 Use secure transport service
with WTLS

6.2.2 O WDP-RP-S-006 AND
WTLS:MCF

OTA-WSP-S-005 SIA/SIR 8
8.2
8.4

O

OTA-WSP-S-006 Application Addressing 6.2.3 M

OTA-WSP-S-007 Initiator Authentication 6.2.4 O

OTA-WSP-S-008 Bearer Selection 6.2.6 O

OTA-WSP-S-009 Bearer Control 6.2.6 O

OTA-CO-S-003 Connection-Oriented Push
using OTA-HTTP

7 O OTA-HTTP-S-001 AND
OTA-HTTP-S-007 AND
OTA-HTTP-S-008 AND
OTA-HTTP-S-009 AND
OTA-HTTP-S-010 AND
OTA-HTTP-S-011 AND
OTA-HTTP-S-012 AND
OTA-HTTP-S-014 AND
OTA-HTTP-S-015 AND
HTTP-S-C-001

OTA-HTTP-S-001 TO-TCP 7.2.4.1 O TCP:MSF

OTA-HTTP-S-002 PO-TCP 7.2.4.1 O TCP:MCF

OTA-HTTP-S-003 Secure (OTA-HTTP-TLS)
TO-TCP

7.2.4.1 O TLS:MSF

OTA-HTTP-S-004 Secure (OTA-HTTP-TLS)
PO-TCP

7.2.4.1 O TLS:MSF

OTA-HTTP-S-005 Registration 7.2.5
7.2.5.1

O

OTA-HTTP-S-006 Registration validation 7.2.5
7.2.5.2

O

OTA-HTTP-S-007 Support Un-authenticated
Terminal Identification

7.2.6.1 O

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 45 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

OTA-HTTP-S-008 Support Authenticated Terminal
Identification

7.2.6.2 O

OTA-HTTP-S-009 Support Authenticated PPG
Identification

7.2.6.2 O

OTA-HTTP-S-010 Application Addressing 7.3 O

OTA-HTTP-S-011 Content Push 7.4 O

OTA-HTTP-S-012 Version Control 7.5 O

OTA-HTTP-S-013 Security Considerations 8.3 O

OTA-HTTP-S-014 Bearer Indication 7.6 O

OTA-HTTP-S-015 SIA/SIR 8
8.1
8.4

O

OTA-HTTP-S-016 Support for the
X-Wap-Push-ProvURL
header

7.2.5.4 O

OMA-WAP-TS-PushOTA-V2_1-20110405-A Page 46 (46)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-EnablerTestSpec-20110101-I]

Appendix B. Change History (Informative)

B.1 Approved Version History
Reference Date Description

WAP-189-PushOTA 17 Feb 2000 WAP 1 Conformance Release Push Over The Air Specification

WAP-189_100-PushOTA 11 Dec 2000 Approved SIN on WAP 1 Conformance Release

WAP-189_101-PushOTA 26 Sep 2001 Approved SIN on WAP 1 Conformance Release

WAP-235-PushOTA 25 Apr 2001 WAP 2 Conformance Release Push Over The Air Specification

OMA-WAP-TS-PushOTA-V2_1-20110405-A 05 Apr 2011 Status changed to Approved by TP
 TP ref # OMA-TP-2011-0098-INP_Push_V2_1_ERP_for_Final_Approval

