
 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

White Paper on Rich Media Environment Technology
Landscape Report

Candidate – 14 Oct 2008

Open Mobile Alliance
OMA-WP-Rich_Media_Environment-20081014-C

OMA-WP-Rich_Media_Environment-20081014-C Page 2 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of
this document and the information contained herein, and makes no representations or warranties regarding third party IPR,
including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you
must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in
the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

http://www.openmobilealliance.org/ipr.html
http://www.openmobilealliance.org/UseAgreement.html

OMA-WP-Rich_Media_Environment-20081014-C Page 3 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Contents
1 SCOPE .. 5
2 REFERENCES... 6
3 TERMINOLOGY AND CONVENTIONS .. 7

3.1 CONVENTIONS ... 7
3.2 DEFINITIONS .. 7
3.3 ABBREVIATIONS .. 7

4 INTRODUCTION ... 8
5 POTENTIAL TECHNOLOGIES FOR RME ... 9

5.1 MPEG4 PART 20 (LASER) ... 9
5.2 THE MOBILE OPEN RICH-MEDIA ENVIRONMENT (MORE) .. 10

5.2.1 Scene Presentation Format ... 10
5.2.2 Scene Update Format ... 11
5.2.3 Local User Interaction .. 11
5.2.4 Container/Delivery Format .. 11
5.2.5 Re-synchronization and Tune-in .. 11
5.2.6 Transport .. 11
5.2.7 Compression .. 11

6 COMPARISION OF THE TECHNOLOGIES AGAINST THE REQUIREMENTS ... 13
7 EVALUATION OF THE TECHNOLOGIES AGAINST THE REQUIREMENTS ... 36

7.1 MPEG4 PART 20 (LASER) ... 36
7.1.1 Alignment of LASeR with SVG Tiny 1.1 and 1.2 ... 36
7.1.2 RME Dynamic updates requirements .. 37
7.1.3 Combination of updates ... 39
7.1.4 Streaming and reliability requirements .. 39
7.1.5 Caching and private data management... 43
7.1.6 Synchronization ... 43
7.1.7 Efficiency ... 43
7.1.8 Packaging ... 45
7.1.9 Integration .. 46

7.2 THE MOBILE OPEN RICH-MEDIA ENVIRONMENT (MORE) .. 52
7.2.1 Overview .. 52
7.2.2 Scene and Scene Updates ... 52
7.2.3 SVG and Associated Media ... 56
7.2.4 MORE Client Architecture .. 57
7.2.5 Container Format ... 60
7.2.6 Transport Mechanisms ... 61
7.2.7 Compression .. 62
7.2.8 Conclusion ... 62

7.3 SUMMARY .. 62
APPENDIX A. CHANGE HISTORY (INFORMATIVE) .. 63
APPENDIX B. EXAMPLE FOR THE COMPLIANCY OF LASER WITH THE XML PROCESSING MODEL . 64
APPENDIX C. ANNEX A: SVG EVENTS .. 72
APPENDIX D. ANNEX B: APPLICATION LEVEL SYNCHRONIZATION ... 77
APPENDIX E. ANNEX C: TRANSPORT LEVEL SYNCHRONIZATION ... 79

OMA-WP-Rich_Media_Environment-20081014-C Page 4 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Figures
Figure 1: LASeR engine components and normative parts (from section 6.4 of the LASeR specification) 36

Figure 2: Architecture of LASeR and SAF.. 37

Figure 3: updates construction ... 40

Figure 4: Overview of a LASeR stream ... 42

Figure 5: Component architecture of a LASeR v1 client ... 47

Figure 6: Component architecture of a LASeR v2 client ... 47

Figure 7: Dual SVG Tiny/LASeR Client .. 48

Figure 8: Architecture of LASeR as a plugin in the browser ... 49

Figure 9: LASeR –CDF Architecture ... 49

Figure 10: GENERAL ARCHITECTURE OF THE RICH MEDIA SYSTEM .. 52

Figure 11: Illustration of Scene and Scene Updates delivery and realization. ... 54

Figure 12: temporal management of scene and scene update .. 56

Figure 13: MORE Client Architecture .. 58

Figure 14: TRANSPORT SCENARIOS HANDLED BY MORE ... 61

Tables
Table 1: MORE components... 12

Table 2: RME Requirements Table ... 32

Table 3: DIMS Requirements Table .. 35

Table 4: SVG/LASeR Synchronisation features table .. 43

OMA-WP-Rich_Media_Environment-20081014-C Page 5 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

1 Scope
The objective of this white-paper document is to provide technical descriptions and initial analysis of available technologies
that are candidate to the RME enabler specification, answering the RME requirements. Note that Sections 5, 6, and 7 describe
the analysis of the technogies by the proponents and a detailed analysis by OMA will be done in the next phase of the
specification.

In the Rich-Media Environment, a Rich Media service is a dynamic, interactive collection of multimedia data such as audio,
video, graphics, images and text. It ranges from a movie enriched with vector graphics overlays and interactivity (possibly
enhanced with closed captions), to complex multi-step services with fluid interaction/interactivity and different media types
at each step. The demand for such Rich Media service is increasing at a high pace, spurred by the development of the next
generation mobile infrastructure and the generalization of TV content to new mobile environments.

As a consequence the scope of the RME focuses on dynamic rich-media services, where the services offered to the end-user
are enhanced by the cooperative linkage between media (e.g.: synchronisation between events and media, real-time delivery
of content…) combined with interactivity mechanisms and/or end-user interaction. The RME enabler can be use as a generic
enabler, allowing creating dynamic interactive rich-media services and can also benefit, or be used in association with other
OMA enablers such as BCAST or DCD.

As the RME enabler is bearer agnostic, its functionalities shall not be restricted to or by the usage of a particular bearer.

The RME enabler complements the browsing enhancement work item, covering “web on mobile”, “web browsing” or “web
application” in which the navigation and visualisation mode is on a page by page basis and where in general, the dynamic
data are not rich-media (for instance in a flight booking service), where modification needs an user action (as opposed to
streamed data) and where the timing model does not depend on real-time data nor implies tight synchronisation.

To achieve this goal the RME WP will:

• List available technology (e.g.: based on the RME WID)

• Provide a technology landscape

• Analyse technology against requirements

• Open the discussion to specify the RME enabler in the RME TS.

OMA-WP-Rich_Media_Environment-20081014-C Page 6 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

2 References

[IOPPROC] “OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-
Process-V1_1, URL:http://www.openmobilealliance.org/

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,
URL:http://www.ietf.org/rfc/rfc2119.txt

[RFC2234] “Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November
1997, URL:http://www.ietf.org/rfc/rfc2234.txt

http://www.ietf.org/rfc/rfc2234.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.openmobilealliance.org/

OMA-WP-Rich_Media_Environment-20081014-C Page 7 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

3 Terminology and Conventions
3.1 Conventions
This is an informative document, which is not intended to provide testable requirements to implementations.

3.2 Definitions
N/A

3.3 Abbreviations
BIFS Binary Format For Scene

LASeR Lightweight Application Scene Representation

MPEG Moving Picture Expert Group

OMA Open Mobile Alliance

SAF Simple Aggregation Format

SVG Scalable Vector Graphic

W3C World Wide Web Consortium

OMA-WP-Rich_Media_Environment-20081014-C Page 8 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

4 Introduction
This white-paper document provides technical descriptions and initial analysis of available/proposed candidate technologies
for the RME enabler specification to address the RME requirements.

In the Rich-Media Environment, a Rich Media service is a dynamic, interactive collection of multimedia data such as audio,
video, graphics, images and text. It ranges from a movie enriched with vector graphics overlays and interactivity (possibly
enhanced with closed captions), to complex multi-step services with fluid interaction/interactivity and different media types
at each step. The demand for such Rich Media service is increasing at a high pace, spurred by the development of the next
generation mobile infrastructure and the generalization of TV content to new mobile environments.

As a consequence the scope of the RME focuses on dynamic rich-media services, where the services offered to the end-user
are enhanced by the cooperative linkage between media (e.g.: synchronisation between events and media, real-time delivery
of content…) combined with interactivity mechanisms and/or end-user interaction. The RME enabler can be use as a generic
enabler, allowing creating dynamic interactive rich-media services and can also benefit, or be used in association with other
OMA enablers such as BCAST or DCD.

As the RME enabler is bearer agnostic, its functionalities shall not be restricted to or by the usage of a particular bearer.

The RME enabler is intended to complement the OMA browsing enhancement work item, covering “web on mobile”, “web
browsing” or “web application” in which the navigation and visualisation mode is on a page by page basis and where in
general, the dynamic data are not rich-media (for instance in a flight booking service), where modification needs an user
action (as opposed to streamed data) and where the timing model does not depend on real-time data nor implies tight
synchronisation. While technology solutions for the browsing enhancements work item are not specifically called out as a
solution for RME the ability to integrate with the browser, especially in meeting the defined requirements.

OMA-WP-Rich_Media_Environment-20081014-C Page 9 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

5 Potential Technologies for RME
The following is the list of technologies or technology combinations proposed for consideration to meet the requirements
defined in the requirements document [RME-RD].

• MPEG4 part 20 (LASeR) [LASeR]

• MORE

5.1 MPEG4 part 20 (LASeR)
LASeR, formally known as ISO/IEC 14496-20 (MPEG-4 Part 20), is the new Rich Media standard dedicated to the mobile,
embedded and consumer electronics industries specified by the MPEG standardization group. The objective of MPEG4
part20 are to enable a fresh and active user experience on constrained networks and devices based on enriched content,
including Audio, Video, Text, and Graphics And to addresses the requirements of the end-to-end rich media publication
chain: ease of content creation, optimized rich media data and streams delivery and enhanced rendering on all devices.

MPEG4 part 20 is composed of LASeR (Lightweight Application Scene Representation) and SAF (Simple Aggregation
Format).

LASeR is a format for scene description and:

• Is inspired by the concepts of Macromedia Flash™, and ISO/IEC MPEG/BIFS,

• Is based on W3C/SVG specification; LASeR cumulates the particular knowledge and know-how of both W3C and
MPEG groups.

LASeRv2 supports:

• The SVG Tiny 1.2 scene description

• A set of key compatible extensions over SVG Tiny1.2,

• The ability to encode and transmit LASeR files, LASeR scene fragments, and private XML data.

• The ability to encode and transmit LASeR stream. LASeR content can be delivered into packaged pieces, allowing
display as soon one piece is received (as opposed to a download an play mechanism). This concept of “streaming”,
already into place for audio and video data, has been generalized to scene description and Rich Media. As such,
services can be designed such that there is always some information of interest on the screen.

• Dynamic updating of the scene to achieve a reactive, smooth and continuous service.

• Simple yet efficient compression to improve delivery and parsing times, as well as storage size.

• An efficient interface with audio and visual streams with frame-accurate synchronization.

• Usage of any font format.

• Easy conversion from other popular rich-media formats in order to leverage existing content and developer
communities.

LASeR v2 is a super-set of LASeR v1. See Section 7.1.1.

SAF aims at fulfilling all the requirements of rich-media services at the interface between media/scene description and
existing transport protocols:

• Simple aggregation of any type of stream, file or fragment.

• Dynamic addition of new streams/files after the start of the delivery.

• Media interleaving,

• Precise synchronization mechanisms support.

• Signalling of MPEG and non-MPEG streams,

OMA-WP-Rich_Media_Environment-20081014-C Page 10 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

• Optimized packet headers for bandwidth-limited networks to guarantee a very low overhead,

• Easy mapping to popular streaming formats,

• Enhanced support for progressive download.

• Real time transmission/delivery.

• Cache management capability.

• Extensibility such as adding new packet types or new stream types.

LASeR and SAF can be used independently.

Availability of the specifications:

• LASeR v1 has reached the FDIS stage in October 2005.

• LASeR v2 will reached the FPDA stage in October 2006.

5.2 The Mobile Open Rich-media Environment (MORE)
MORE is an open suite of W3C, OMA, 3GPP and IETF technologies combined to meet the requirements for formatting,
packaging, compressing, transporting, rendering and interacting with rich media files and streams. The system leverages the
respective components of existing W3C, 3GPP, MPEG, OMA solutions such as the SVG Mobile 1.2 Profile, MBMS, ISO
Media File Format and browsing enablers. MORE solution is also compatible with JSR-226, which defines an API for
loading and manipulating SVG Tiny 1.1 content using a compatible Micro DOM subset tailored for Mobile Java
Environment.

The scene update syntax in MORE will rely on the REX (Remote Events for XML) initiative in W3C that is spear-headed by
SVG WG in an effort to meet the requirements of RME/DIMS specifications. The proposed XML update specification will
be based on a set of requirements that are intended to maintain compatibility with DOM events, declarative in nature, and
integrates well with the WWW architecture. The current charter of the Web Applications API will be responsible for
maintaining this specification. Note that the syntax for update mechanism is not limited only to SVG but also extensible to
other mark-ups, besides being very efficient and light weight for platforms that are already capable of supporting mobile
SVG standard.

As the underlying presentation format for rich media in both OMA-RME and 3GPP-DIMS work-items is SVG based, MORE
provides a solution to embed vector graphics content such as SVG into the existing 3GPP ISO Base Media File Format for
streaming of live rich media content over MMS/PSS/MBMS services. This method will allow the container format to be used
for packaging rich media content (graphics, video, text, and images), enabling streaming servers to generate RTP packets, and
clients to interact, realize, play, or render rich media content.

MORE provides the ability to support interaction among the rich media clients and servers. Mechanisms for interactivity
include provisions for local (client side) and remote interaction (server-client), as well as for real time and non-real time
feedback over various broadcast and peer-to-peer transport protocols. Local interaction mechanisms in MORE are based on
SVG Mobile 1.2 event model, designed after the W3C XML events and DOM Level 3 Events model. For remote interaction,
MORE provides a framework and message format syntax for client feedback.

The following sub-sections presents an overview of the components involved in the Rich Media system architecture. It also
provides references to related activities that are taking place in other Standards Organizations (SDOs) that MORE would like
to collaborate closely with and utilize in order to exploit the synergies that exist between them.

5.2.1 Scene Presentation Format
This component refers to scene presentation format for compositing, document language processing and rendering rich media
(vector and raster graphics, audio, video, text) content, providing backward and forward compatibility with open standards
specifications including the compatibility with uDOM API, dynamic updating of rich media content, being able to interface
with the open standards based browser client and providing referencing and synchronization among the different media.
MORE uses SVG Mobile 1.2 (also referred to as SVG Tiny 1.2) as a basis for its presentation format without profiling. Any

OMA-WP-Rich_Media_Environment-20081014-C Page 11 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

necessary extensions will be defined in an extensible and compatible manner. Since SVG Mobile 1.2 is developed in W3C,
this work should involve close collaboration with them for achieving interoperability at the highest level.

5.2.2 Scene Update Format
This component refers to scene update format and mechanisms. MORE will rely on the REX (Remote Events for XML)
initiative, a joint effort between W3C SVG and Web Apps working groups (http://www.w3.org/TR/rex/). The proposed
XML update specification will be based on a set of requirements that are intended to maintain compatibility with DOM
events, declarative in nature, and integrates well with the WWW architecture and the general requirements of the WAE
(Wireless Applications Environment).

5.2.3 Local User Interaction
This component refers to the ability to allow the user to interact locally with the rich media content in both real- time and as
well as non-real time. It also includes event handling with the dynamic updates of the rich media content i.e. generation of
DOM Mutation events as a result of applying scene updates. These are seen as application level protocols such as scripting
and interaction with DOM. Local event management should be handled through W3C DOM Events. As the expertise for
integrating this area lies in OMA, this work will be defined in OMA with necessary alignment with W3C. To ensure
interoperability on the client, JCP is also relevant as the DOM definitions are common between W3C SVG Mobile 1.2 and
JCP JSR-226 specifications.

5.2.4 Container/Delivery Format
This component refers to the packaging of different rich media data into a file that can be used as a storage format for
download, progressive download and streaming profiles. MORE proposes using existing ISO Base Media File Format that is
used extensively in mobile services today, therefore it is preferred that we work with 3GPP in this area as much as possible.

5.2.5 Re-synchronization and Tune-in
This component refers to the client’s ability to be able to re-synchronize with and tune-in to the rich media service. MORE
provides several mechanisms to aid this purpose such as the usage of random-access points, transmission of current list of
active elements, and the transmission of scene information at key intervals. This component has implications on both
application and underlying transport, therefore MORE proposes to coordinate closely with 3GPP as much as possible when
dealing with synchronization at the transport level.

5.2.6 Transport
This component refers to the transport mechanisms for delivering rich media content to the terminal including the ability to
support download and play, progressive download and real-time streaming, efficient transmission of rich media data and
updates over standard protocols such as HTTP, FLUTE, and RTP. MORE facilitates random access to different parts of the
presentation over time, graceful handling of packet loss, retransmission and error correction of lost packets, These lower-
level transport technologies are outside the direct scope for OMA; MORE solution proposes to coordinate any work in this
area with 3GPP/IETF as needed.

5.2.7 Compression
The use of compression and content specific encoding techniques are economically driven decisions. Rich media content
consists of SVG scenes and scene updates along with other referenced media. For streaming purposes, existing compression
methods can be used for referenced media. However, compressing small sized SVG does not yield high benefits with the
available bandwidth in today’s networks. For large content, MORE recommends using Gzip as it results in high compression
ratio. Hence, there is no specific need for introducing a new compression mechanism for rich media. Note however, that
MORE does not preclude application of a specific encoding scheme that is widely adopted in the industry. This approach
may be modified depending upon the outcome of the W3C work on XML compression as it tries to address compression for
arbitrary XML data and not schema specific. In any case, it is important to view any encoding and compression decisions as
orthogonal and separable from any base design decisions

The following table presents the different components or scope areas within the MORE architecture, brief description,
relevant SDOs and their publication status.

http://www.w3.org/TR/rex/

OMA-WP-Rich_Media_Environment-20081014-C Page 12 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Component/ Scope Area Description SDO Reference

Scene Presentation Format Rich Media Scene
representation format is
based on SVG Mobile 1.2

- Extensible to CDF in the
future

W3C/OMA W3C SVG Mobile 1.2

Publication Status: W3C Last Call
Working Draft

Estimated Time for Completion:
CR-April 2006

Scene Update Format Scene update syntax based
on DOM Event based
processing model.

Remote Events for XML
(REX)

W3C/OMA W3C REX

Publication Status: W3C Public
Working Draft

Estimated Time for Completion:
CR-June 2006

Local User Interaction DOM Level 3 Events Model
(user events, DOM events)

W3C/OMA W3C SVG Mobile 1.2/DOM Level
3 Events

Publication Status: W3C Note

Container/Delivery Format 3GP extensions (new track
for SVG content, etc.) for
download and streaming

3GPP/OMA MORE proposal

Publication Status: Member
Proposal

Estimate Time for Completion:
Dependent on RME timeline

Re-synchronization & Tune In Random access points, tune-
in

3GPP/OMA MORE proposal

Publication Status: Member
Proposal

Estimate Time for Completion:
Dependent on RME timeline

Transport Payload format and types
for SVG content for RTP
streaming

3GPP/OMA MORE proposal

Publication Status: Member

Estimate Time for Completion:
Dependent on RME timeline
Proposal

Compression GZIP IETF RFC 1952

Publication Status: Final

Table 1: MORE components

OMA-WP-Rich_Media_Environment-20081014-C Page 13 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

6 Comparision of the technologies against the
requirements

In this section the technologies are simply compared against the requirements defined in [RME-RD] without any form of
judgement as to suitability being applied. The requirements are grouped into themes with the detailed requirements being
subsidiary to the themes. A tabular means is used to allow easy comparison.

In this table the supports column concerns what is standardised in existing specifications used or re-used by candidates.
Application or final solution based on one or the other candidates will fulfilled all the requirements by specifying the
“missing part” if needed. Some of the requirements can only be fulfilled at the implementation level.

The labels in the table are defined as follow:

'Yes' - The requirement is met by already defined and approved specification.

'Being specified’ -The requirement is met by the specification that is being developed in a specific release and indicative
timescale exists. This requires the feature is already been agreed by the group developing the specification.

'Proposed’ - The requirement can be met by a proposal submitted to the group developing the specification but there is no
commitment by the owning organisation to develop the feature.

A proposal shall be provided with enough information so that we can assess it may meet the requirement.

The ownership of the submitted proposal shall be indicated (e.g;: W3C, 3GPP, OMA, MPEG, IETF…).

'No' - None of above. The requirement is out-of-scope of the candidate.

Requirement Groups and
detailed requirements

MPEG 4 part 20 MORE
Supports Comments Supports Comments

General
Requireme
nt for the
media-
type

RME-FUNC-001
The RM enabler
SHALL support
methods to
minimize the
latency perceived
by the end user.

Yes

Being
specified

LASeR provides multiples features
to achieve this goal, in particular:
 1 - a binary format allowing a fast
parsing speed, a fast delivery of
highly compressed content,
2 - a very efficient declarative
dynamic update mechanism to have
always modifications on the end-
user screen and to replace the page
by page navigation provided by
XML based technology.
3 – means to play content while
waiting feedback from a request,
while buffering data or while
waiting for a new scene.

LASeR v2 provides enhanced
media management for the mobile
environment (“StreamSource”),
especially addressing the
specificities of broadcasting

Yes

Being
Specified
Proposal
(3GPP)

MORE supports the
following methods to
minimize perceived
latency.

1) MORE provides for
progressive
download/rendering
mechanisms as
specified in SVG
Mobile 1.2
specification.

2) MORE uses GZIP as
the compression
mechanism. GZIP can
be used for large scenes
and small sized content
can be transmitted as is
to reduce overhead.

OMA-WP-Rich_Media_Environment-20081014-C Page 14 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

networks, allowing for low-latency
channel switching.
Detailed information in section 7.1

3) Supports dynamic
updates of content.
(REX)

4) Transport of
dynamic updates Please
refer to transport
section in the MORE
proposal.

RME-FUNC-002
It SHALL be
possible to
present multiple
RM data sources
within a single
scene.

Yes The design of the LASeR engine
supports the integration within one
scene of data and streams coming
from various origins, e.g. different
HTTP servers, DVBH + 3G, HTTP
+ RTP, etc.
This can be achieved through the
'href' attribute or through
StreamHeader and
RemoteStreamHeader units..

Yes In MORE, the scenes
allow for embedding
raster and vector
graphics, video and
audio with SVG as
defined in the SVG
Mobile 1.2
specification.
With SVG, one can
embed (base64) and
reference (xlink:href)
media. In addition,
using xlink:href, one
has the ability to
reference data from
multiple external
resources.

RME-FUNC-003
The RM enabler
SHALL be able to
render, within one
scene, data and
updates received
from different
sources (eg:
networks and
delivery
mechanisms,
content provider).
Note: the service
provider should
be the same

Yes The design of the LASeR engine
supports the integration within one
scene of data and streams coming
from various bearers. E.g.: DVB-H
+ 3G networks
This can be achieved through the
'href' attribute or through
StreamHeader and
RemoteStreamHeader units.

Yes

Proposal
(3GPP/OM
A)

The scene updates
allow for embedding
raster and vector
graphics, video and
audio with SVG as
defined in the SVG
Mobile 1.2
specification.
For timing, the RM
enabler makes use of
run-time
synchronization
functionality that SVG
Mobile 1.2 inherits
from SMIL 2.0. These
attributes are
syncBehavior,
syncTolerance and
syncMaster attributes,
specified on the 'audio',
'video' and 'animation'
elements, and
syncBehaviorDefault
and
syncToleranceDefault
attributes specified on
the svg element.

For resolving content
timing conflict (e.g.

http://www.w3.org/TR/SVGMobile12/multimedia.html#AnimationElement
http://www.w3.org/TR/SVGMobile12/multimedia.html#VideoElement
http://www.w3.org/TR/SVGMobile12/multimedia.html#AudioElement

OMA-WP-Rich_Media_Environment-20081014-C Page 15 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

one source attempts to
add an SVG element,
and another source
attempts to delete the
SVG element), session
priority is applied
through the Session
Description Protocol
(SDP). The terminal
takes care of this
priority information at
its discretion.
To resolve updates
received from different
sources, timing and
inter source conflict
have to be taken into
consideration.

RME-FUNC-015
The RM enabler
navigation and
interaction
SHALL be
agnostic to the
type of MMI
provided (eg
using any input
device)

Yes The LASeR specification provides
specific tools to ease the authoring
of services which are independent
from the type of MMI on the
phones.
In particular LASeR allows the
emulation of a pointing device
(stylus or mouse) through the use of
a keyboard, thus allowing content
to be designed in an input-device
independent manner.

Yes SVG Mobile 1.2
content specification is
agnostic to MMI.
MORE recommends
that the author utilizes
input device agnostic
events. For example,
designing content to
react to the “activate”
UIEvent rather than a
“click”. MouseEvent.

RME-FUNC-017
The content
creator or the
service provider
SHALL be able to
define the
lifecycle of RM
data.

Yes LASeR specifies means to attribute
at the content/service creation the
availability and the timing of any
kind of RM data.
LASeR provides tools to
manipulate the scene content by
adding, modifying and removing
scene elements. Data discarding is
possible with any kind of service
logic: on a frame-accurate basis, on
a relative time, on end-user action,
on end-user navigation, on an
absolute time, etc.

Yes

Being
Specified

MORE re-uses the
definitions of the start
time, end time,
duration with ‘begin’,
‘dur’, and ‘end’ timing
attributes respectively,
as defined by SVG
Mobile 1.2 profile.
These attributes can be
specified for the SVG
data as well as the
embedded media.
For scene and scene
updates the start time is
relative to the
presentation time.
Also, the SVG
`discard’ element can
be used on specific
elements to denote
when they need to be
discarded from
memory.
It is also possible to use
the
DOMNodeRemoved

OMA-WP-Rich_Media_Environment-20081014-C Page 16 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

event in REX to
transmit a server event
that discards useless
data.

RME-FUNC-024:
The RM enabler
SHALL be codec,
network, terminal,
browser,
middleware, OS
agnostic.

Yes LASeR engines can interface with
any kind of media type.
The LASeR specification is codec
network terminal browser,
middleware and OS agnostic.

Yes

Proposal
(3GPP/OM
A)

MORE is compliant
with existing open
standards technologies
and therefore agnostic
to terminal, browser,
middleware, and OS.

For codecs, MORE
recommends to use the
codecs specific to the
service (for e.g. 3GPP,
3GPP2, etc.)
specifications.

RME-FUNC-025
The RM enabler
SHALL allow an
end to end
optimizations to
be applied (eg:
compression,
preparsing, data
preconditionning)

Yes LASeR provides both an highly
efficient compression mechanism a
preconditioning mechanism and a
packaging of data by using SAF
Furthermore a LASeR content is
always provided as a complete and
well formed fragment/packet
whatever are the transmission
modes, for checking, reliable and
optimisations purposes.
See § 7.1.4.1 and 7.1.4.2 in Section 7.

Yes For streaming
purposes, existing
compression methods
can be used for
embedded media (e.g.
audio, video, images).
Any 3GPP/OMA
supported media
codecs can be used. For
example, AMR
Wideband for audio,
H.264 for video, etc.
For compressing scene
content ubiquitous
GZIP is used.
MORE does not
mandate a specialized
encoding method.

RME-FUNC-026
RME-USA-001
The RM enabler
functionality
SHOULD be
scalable from
constrained
terminals to
unconstrained
terminals.

Yes LASeR allows implementations
from medium-range J2ME devices
(MIDP1/2) to higher-end PDA-like
devices.
By definition, the Binary format
specified by LASeR provides a
small footprint of the LASeR User
agent suitable for both constraint
and unconstraint terminal

Yes MORE, through the use
of SVG Mobile 1.2,
allows for designing
content that are
optimized for both very
constrained and
unconstrained
terminals. This is
achieved by using SVG
feature strings that
allows for multiple
execution paths within
the same content based
on client capabilities.
E.g. the same content
may put a rotation on a
video for high-end
devices and use the
same video axis-
aligned on low-end
devices.

OMA-WP-Rich_Media_Environment-20081014-C Page 17 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

In other words content
designed for
constrained terminals is
rendered identical on
unconstrained
terminals

RME-FUNC-027
It SHALL be
possible to invoke
an external
application (eg
MMS SMS
clients) from
within the service
and it MAY be
possible to
integrate those
applications
visually within
the service
interface.

No LASeR engines can be interfaced
with external applications

No MORE does not
preclude this
functionality. MORE
intends to align with
the current OMA
architecture.

RME-FUNC-028
Personalisation by
the end-user of
content, delivered
within the service
SHALL be
possible.

Yes

Being
specified

LASeR can do this through LASeR
Commands Save, Restore and
Clean and do not require to reload
or re download a complete content /
application.
The LASeR update mechanism is
generic, can apply to any XML data
and can be implemented easily on
top of uDOM.

Yes

Being
Specified

Based on the
preferences, the
application may chose
to alter the content
using the uDOM and
scripts.

The alternative method
is to send these changes
via updates (REX)
from the service
provider.

RME-FUNC-029
: Text scrolling
and slideshow
SHALL be
provided

Yes/

Being
specified

LASeR v1 has the same
functionality for text scrolling and
slide show as SVGT1.2
LASeR v2 is specifying in addition
another tool to achieve more
functionality for text scrolling e.g.
management of dynamically
changing text, unknown font size...

Yes The MORE client
allows for scrolling and
rendering slideshows
with the use SVG
Mobile 1.2 features.
For e.g. The animation
element controlling the
scrolling text can be
updated when the text
itself is updated using a
script that queries the
text width.

RME-FUNC-030
The RM enabler
SHALL allow
best effort font
management
regardless of
screen size
language and
fontstyle.

Yes/

The design of the LASeR client
does not mandate any font systems .
LASeR recommends the usage of
OpenType font system that
provides a convenient hinting of
characters for any language and in
particular for Arabic or Asian
language
LASeR specifies that font can be
encoded within the content using

Yes MORE supports both
system fonts as well as
SVG based embedded
fonts.
The MORE proposal
does not place any
restrictions on the use
of text and fonts in
content and therefore
provides the same level

OMA-WP-Rich_Media_Environment-20081014-C Page 18 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Being
specified

the anyXML attribute.
LASeR specifies that font can be
transported as separate streams
including SVG font encoded as
opentype font.
LASeR allows the use of system
fonts and specifies a fallback
mechanism for that.

LASeR v2 will provide support of
SVG font.

of support available in
SVG Mobile 1.2.

RME-SEB-001
The RM Enabler
SHOULD be able
to reference and
to access AV
Streams

Yes LASeR inherits this feature from
SVG Tiny 1.2.
LASeR benefits from the MPEG
decoder model and synchronisation
support to complement this feature.

Yes MORE allows for the
inclusion of internally
embedded media as
well as the referencing
of such externally
linked media. It can be
done at both media
type.

RME-USA-003
The RM Enabler
SHOULD
continue to render
the RM service
while content
requested by the
end user is not yet
available
(triggered by a
click on an url, or
a press on a key).

Yes/

Being
specified

The LASeR design allows to
maintain a continuity of rendering
while requesting content. This
feature masks the perceived
latency.
LASeR V2 provides an additional
media management for mobile
environment (“StreamSource”),
answering to this requirement for
A/V sources.

Yes SVG Mobile 1.2
supports for rendering
content while
requesting for
resources currently
unavailable. The user
can request for
resources through
scripting.
The user can also fetch
the external resources
similar to resources
obtained by using by
xlink:href.

RME-USA-002
 The RM Enabler
SHOULD use a
very small
footprint and
require very
limited
performance
when using the
smaller sets of
features.

Yes By using a binary format for the
rich-media data, LASeR allows
smaller and faster implementations
with a smaller memory footprint.
For information the LASeR
Reference Software (Jar file) in
Java MIDP2, non optimised, is
around 100kBytes
See description of the reference
software in § 7.1.9.2.

Yes MORE is based on
SVG Mobile 1.2
profile, which is
designed for small
footprint.
As MORE is based on
SVG Mobile 1.2, it
results in substantial
savings of memory
footprint since a RME
enabler can reuse the
SVG engine that in
most cases already will
be present on the
device and used within
several other enablers
(browser, MMS etc.).

Interactio
n
requirem
ents

RME-FUNC-013
It SHALL be
possible for the
RM enabler to
Interact with the

Yes The backchannel is the same with
SVG Tiny 1.2 and LASeR, but the
response is much more efficient
when:
Content is binary encoded

Proposal MORE supports remote
interaction between the
enabler and source of
the content by
extending existing

OMA-WP-Rich_Media_Environment-20081014-C Page 19 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

source of the rich-
media content

Using the LASeR Commands to
answer the user request.
Using the append mode

See § 7.1.7.2

protocols such as SMS,
MMS, HTTP and
RTSP.
Note that MORE
considers these
different protocols
(rather than extends)
only to provide
flexibility of protocol
usage for remote
interaction.

RME-FUNC-016
The RM enabler
SHALL be able to
discard RM data
when it has been
identified as no
longer useful in
the service.

Yes The discard of data is possible with
any kind of service logic: on a
frame-accurate basis, on a relative
time, on end-user action, on end-
user navigation, on an absolute
time, etc.
See 7.1.2.1.5 and 7.1.5

Yes

Being
Specified

MORE uses the
'discard' element in
SVG Mobile 1.2 allows
authors to specify the
time at which particular
elements may be
discarded. This is
particularly useful for
enablers to handle
long-running
documents. The
attribute can be either
set during the content
creation time or the
during the user
interaction with the
help of scripting.
Or the service provider
may wish to use the
DOMNodeRemoved
event in REX to
transmit a server event
that discards useless
data.

RME-USA-003.1
The author
SHOULD have
the choice of
specifying what
should happen
between the
request and the
arrival of the
content or during
buffering. Eg:
continue to play
the current scene,
play a specific
pre-buffered
animation or
transition, or do
nothing.

Yes The LASeR design allows the
rendering of either the current
content, or another content while
waiting for requesting content. The
latency is masked by this capability

Yes MORE re-uses the
<prefetch>
functionality as
specified in SVG
Mobile 1.2. Prefetch
functionality is used for
the user agent to
specify how the content
needs to be buffered
before a smooth
presentation can be
rendered

Timing RME-FUNC-006
RM data

Yes MPEG4 part 20 provides tools to
manage timed based services and

Yes

At the application
level, MORE uses the

OMA-WP-Rich_Media_Environment-20081014-C Page 20 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

and
synchronis
ation
requireme
nts for the
media-
type

rendering time
and
synchronisation
SHALL be
controllable by
the RM enabler.

frame based services. In the LASeR
scene format the rendering time is
controllable in conformance with
content creator wishes. If a content
is designed for 15 frames per
second and the devices support a 10
frames per second display: the
choice of the rendering policy
belongs to the content provider:
either to have a long experience but
all frame are displayed, or a timed
experience, and frame are dropped.
Synchronisation between time-
based media and static media or
between multiple time-based media
is possible.

LASeR allows the creation of frame-
based content, and provides means to
establish interactive links from/to any
frame, based on a timed logic.

Proposal
(3GPP)

timing attributes as
specified within the
SVG language along
with the attributes for
run-time
synchronization can be
used to precisely
control synchronization
between frame-based
and non-frame based
media.

At the transport level,
MORE provides timing
and time to decode
information, stored in
the ISO Base Media
File Format to
synchronize samples of
different media.
MORE also uses the
RTP timestamp in the
RTP payload (taken
from the media time
sample boxes in the
container format) and
the NTP timestamp (in
the RTCP sender
report) to form a pair
that identifies the
absolute time of a
particular sample in the
stream.

RME-FUNC-007
The service
provider SHALL
be able to express
an appropriately
accurate
synchronisation
for the RM data
which SHOULD
be honoured by
the enabler.

Yes LASeR inherits from SMIL and
SVG Tiny 1.2 the means to signal
the author-specified
synchronisation request.
LASeR inherits from MPEG-4
Systems a timing model allowing
the scene updates to be
synchronized with other streams.
LASeR defines precisely how to
recover the scene time information
from the transport time stamp in
order to benefit fully from the
synchronisation support offered by
transport layers
As a result of all the above, LASeR
allows the implementation of a
complete synchronization
framework which works on scene
and media streams in a unified
manner.

Yes
Proposed
(3GPP)

MORE provides this
information in multiple
ways:
1) As specified in SVG
Mobile 1.2.
2) Through the ISO
Base Media File
Format.
Also see above
response to FUNC-006.

RME-FUNC-008
Progressive
rendering of RM

Yes LASeR inherits progressive
rendering from SVG, but also offers
significantly improved means to

Yes Supports this feature as
described by SVG
Mobile 1.2

OMA-WP-Rich_Media_Environment-20081014-C Page 21 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

data SHALL be
provided

achieve streamability, through the
use of LASeR Commands.
See § 7.1.4.2

Specification (Ref:
Chapter 5.9.2)

RME-FUNC-009
RM content
SHALL be
dynamically
updatable in real
time by the RM
enabler

Yes LASeR updates are “object based”,
declarative, simple and efficient to
implement, use an easy-to-parse
binary format and cover the whole
scope of tree modifications. LASeR
updates do not rely on scripting.
The append mode and the MPEG
timing model also contribute to the
power of the MPEG updates.
See laser specification § 6.4

Being
Specified

Proposed
(3GPP/OM
A)

MORE relies on the
REX (Remote Events
for XML) initiative, a
joint effort between
W3C SVG and Web
Apps working groups.
The proposed XML
update specification
will be based on a set
of requirements that are
intended to maintain
compatibility with
DOM events,
declarative in nature,
and integrates well
with the WWW
architecture.

Scene updates in the
form of add, delete,
replace operations
based on DOM events
and can be streamed at
real time to the client.

RME-FUNC-012
The service
provider SHALL
be able to create
links between RM
content at
arbitrary times or
places in the
scene

Yes Any pixel can be addressed as an
interactive point within the scene.
In addition to the means to create
links inherited from SVG Tiny 1.2,
LASeR allows the creation of
frame-based content, and provides
means to establish interactive links
from/to any frame, based on a
timed logic.

Yes

Proposal
(3GPP)

Supports linking
between content as
specified in SVGT 1.2
using xlink:href
attribute and Animation
module.
Note that SVG
provides the capability
of seeking between
arbitrary times both by
using the xlink:href
property when pointing
to an animation and by
setting the currentTime
attribute in the uDOM.
In addition, random
access is provided to
create links to arbitrary
points in the
scene/content. Further,
the timing for each
sample is specified in
the ISO Base Media
File Format, and is
present as a timestamp
for the RTP packets
formed out of this
container format.

OMA-WP-Rich_Media_Environment-20081014-C Page 22 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

RME-FUNC-014
Interactivity and
interaction
SHALL be
possible on a
frame accurate
basis (time code
or relative time).

Yes The interactivity and the interaction
are possible within a stream of rich-
media data, allowing real time and
precise synchronization of the
interaction. For non-streaming
delivery of rich-media data the
synchronization is also provided on
a frame-accurate basis.

Proposal
(3GPP)

MORE provides
interaction
functionality at greater
precision at sync
samples as well as
millisecond level to
allow for greater time
accuracy.
Sync Sample Box and
Shadow Sync Sample
Box are defined in ISO
Base Media File
Format. The Sync
Sample Box provides a
compact marking of the
random access points
within the stream. If
the sync sample box is
not present, every
sample is a random
access point.
For more details please
refer to the detailed
proposal.

RME-REL-001.1
The RM enabler
SHALL be able to
support re
synchronisation
with an existing
active stream.

Yes LASeR provides means to support
carrousseling and means to
synchronise scene and rich-media
content with time-based media.

Proposal
(3GPP)

MORE allows
provision for quick
tune in to an existing
active stream during
the presentation.
The following
mechanisms are used:
- Random access points
- Transmitting the
current scene in short
intervals to the tuned in
client.
- The use of timing for
packet ordering and
packet expiration.

RME-REL-001.2
The RM enabler
SHALL support
arbitrary access
points to tune in
the middle of
content

Yes LASeR provides the RefreshScene
mechanism which is designed to
provide tune-in capabilities in a
broadcast like environment, as well
as error recovery in a lossy
streaming environment.

Proposal
(3GPP)

MORE provides this
information through the
container format,
which provides random
access points to allow
clients to tune into or
access an arbitrary
random access point in
the presentation.

RME-SEB-003
The RM Enabler
SHALL be able to
specify multiple
synchronisation
masters. (E.g.:

Yes This functionality is provided both
for broadcast consideration usage
(e.g.: mosaic menu) and for
situations with multiple
interactively triggered media within
one scene.

Yes MORE supports
synchronization of
different media at the
application level,
MORE utilizes the run-
time synchronization

OMA-WP-Rich_Media_Environment-20081014-C Page 23 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

This is required to
deal with
situations dealing
with multiple
synchronized
groups of streams,
such as video-on-
demand.)

functionality that SVG
Mobile 1.2 inherits
from SMIL. These
attributes are
syncBehavior,
syncTolerance and
syncMaster attributes,
specified on the 'audio',
'video' and 'animation'
elements, and
syncBehaviorDefault
and
syncToleranceDefault
attributes specified on
the svg element.

Reliability
requirem
ents for
the
media-
type

RME –REL-001
The RM enabler
SHALL support
graceful handling
of packet loss.

Yes SAF provides a way to detect
packet loss and LASeR is designed
to handle gracefully incomplete
scenes.
LASeR uses the same SVGT1.2
error handling model and specifies
an error handling process for the
updates.

Proposal
(3GPP/OM
A)

MORE also supports
graceful recovery from
packet loss at the media
level by providing
mechanisms for error
detection and error
concealment as
described in the MORE
detailed proposal.

RME-REL-001.3
The RM Enabler
SHOULD handle
duplicated data
provided for error
recovery
purposes.

Yes LASeR provides the RefreshScene
mechanism which is designed to
provide tune-in capabilities in a
broadcast like environment, as well
as error recovery in a lossy
streaming environment

Proposal
(3GPP/OM
A)

MORE provides
solution for error
recovery requirement
through determining
the level of scene
dissimilarity
information. Based on
this information the
user agent can chose to
either replace/refresh or
not.
Note that error
recovery is relevant to
both network and
media type.

RME-IOP-001
Newer versions of
the RM enabler
SHALL be
backward
compatible

Yes LASeR inherits from SVG Tiny a
provision for versioning so that
LASeR V2 players can play LASeR
V1 content like LASeR V1 players.
The LASeR binary encoding is
generic and extensible, it is also
backward and forward compatible.

Yes Backwards compatible
as MORE is based on
open standards and
does not alter the
semantics of existing
components. For e.g.
content that is based on
SVGT 1.1 can be fully
rendered on SVG
Mobile 1.2 (MORE)
user agent.

RME-IOP-002
Old versions of
the RM enabler
SHALL be
forward
compatible

Yes LASeR inherits from SVG Tiny a
provision for versioning so that
LASeR V1 players can play LASeR
V2 content to the extent possible
The LASeR binary encoding is also
backward and forward compatible.

Yes The design of MORE
based on open
standards and therefore
is extendable.

http://www.w3.org/TR/SVGMobile12/multimedia.html#AnimationElement
http://www.w3.org/TR/SVGMobile12/multimedia.html#VideoElement
http://www.w3.org/TR/SVGMobile12/multimedia.html#AudioElement

OMA-WP-Rich_Media_Environment-20081014-C Page 24 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Caching
Storage
requirem
ents

RME-FUNC-018
The storage of
RM data and the
privacy to be
applied to the
stored information
SHALL be
possible on the
client and/or on
the server side

Yes The use of LASeR does not impact
the storage and management of the
privacy of data on the server.
LASeR allows to store and manage
privacy of data on the client by
providing an interface to store
information on a device, with
cookies-like limitations for security.

No MORE utilizes existing
mechanisms and it is
important to note that
MORE does not
preclude using a
particular method
available on the
terminal.
At this time browser
environment caching is
supported by most
implementations, either
through proprietary
means or through
client/server standard
mechanisms such as
cookies.

RME-FUNC-019
RM data and
update SHALL be
cachable locally
i.e.: on the end
user device.

Yes SAF provides means to specify the
cacheability of streams and scenes
on the client device.
LASeR provides an interface to
store information on a device

No MORE utilizes cache
mechanisms of the
parent application (e.g.
Browser). It is
important to note that
caching is application
specific functionality
and can be different
based on the
application in use. We
recommend that OMA
define this functionality
that is suitable to RM
enabler.
At this time browser
environment caching is
supported by most
implementations, either
through proprietary
means or through
client/server standard
mechanisms.

RME-FUNC-020
The RM enabler
SHOULD be able
to manage
preference data (
user and/or
application)
locally.

Yes LASeR provides a way to manage
preference data locally through the
use of LASeR Commands Save,
Restore and Clean.

No MORE utilizes existing
mechanisms and it is
important to note that
MORE does not
preclude using a
particular method.
It is not yet clear
whether an RME
specific
personalization and
caching mechanisms
will be required, or
whether RME will be
able to use an
externally defined
personalization or

OMA-WP-Rich_Media_Environment-20081014-C Page 25 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

caching enabler. At
this time browser
environment
personalization and
caching is supported
by most
implementations,
either through
proprietary means or
through client/server
standard mechanisms
such as cookies.

RME-FUNC-021
RME-SEC-001
The RM enabler
SHALL NOT
allow to share
private data from
one service to an
other (e.g.:
allocation of data
to a dedicated
service based on
cookies-like
functionality)

Yes LASeR uses a "cookies"
mechanism which provides exactly
this

No MORE utilizes existing
mechanisms and it is
important to note that
MORE does not
preclude using a
particular method.
At this time browser
environment
personalization and
caching is supported
by most
implementations,
either through
proprietary means or
through client/server
standard mechanisms
such as cookies.

RME-FUNC-022
End-User privacy
SHALL be
respected

Yes LASeR uses a "cookies"
mechanism which provides exactly
this.

No MORE utilizes existing
mechanisms and it is
important to note that
MORE does not
preclude using a
particular method.

RME-SEC-001.1
The RM Enabler
SHALL be able to
securely store
permanently a
small amount of
information for
personal
information
purposes and RM
session contexts
(i.e., stateful
session,
icons,,user
preferences…)

Yes LASeR and SAF use a "cookies"
mechanism which provides exactly
this .

No MORE utilizes existing
mechanisms and it is
important to note that
MORE does not
preclude using a
particular method.
 It is not yet clear
whether an RME
specific
personalization and
caching mechanisms
will be required, or
whether RME will be
able to use an
externally defined
personalization or
caching enabler. At
this time browser

OMA-WP-Rich_Media_Environment-20081014-C Page 26 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

environment
personalization and
caching is supported
by most
implementations,
either through
proprietary means or
through client/server
standard mechanisms
such as cookies.

RME-SEC-001.2
The RM Enabler
SHOULD be able
to securily store
temporary a large
amount of
persistent
information for
content cache
process and
offline navigation.

Yes SAF provides suitable caching hints
to achieve such functionality on a
best-effort basis (i.e. if memory is
available on the device to achieve
the caching).
LASeR provide an interface to store
information on the device
See Section 6.6.2.1 of the LASeR
specification

No MORE utilizes existing
private storage
mechanisms of the
parent application (e.g.
Browser) as applicable.

RME-SEC-001.3
The RM Service
SHOULD be able
to define content
storing
mechanisms and
the storing
priority according
to the rich-media
service logic.

Yes SAF provides suitable caching hints
to achieve such functionality on a
best-effort basis (i.e. if memory is
available on the device to achieve
the caching).
LASeR provide an interface to store
information on the device

Yes

MORE utilizes
standard caching
mechanisms for HTTP.

Requirem
ents for
the
packagin
g format

RME-FUNC-004
It SHALL be
possible for the
service provider
to aggregate RM
data

Yes SAF answers to this requirement.
Key benefits using SAF are:
1 - interleaving of media ·
2 - Precise Synchronisation
mechanism
3 - Decrease round trip and network
delay
4 - Decrease network request
5 - Low file overlay

Proposed
(3GPP)

MORE uses the ISO
Base Media File
Format to aggregate
media (SVG, audio,
video, raster and vector
graphics) in to a single
delivery/container
format.
We define a new media
box for SVG and
provide information for
SVG to interact with
existing media (e.g.
audio, video) present in
the container format.
The timing
synchronization
provides the interfacing
with these multiple
media, and do not see a
need to add a new
stream to the file
format.

OMA-WP-Rich_Media_Environment-20081014-C Page 27 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

RME-FUNC-005
It SHOULD be
possible for the
service provider
to aggregate RM
updates

Yes Same as above. In addition SAF
allows the integration of additional
updates or streams in a file or
stream whose transmission has
already started.

Proposed
(3GPP)

The ISO Base Media
File Format can
aggregate media (SVG,
audio, video, raster and
vector graphics).in
scene updates.
Please refer to the
container format
section in the MORE
proposal.

Requirem
ents for
the
Transport
mechanis
ms

RME-FUNC-010
Efficient
transmission (low
delay, low
overhead) of RM
data and updates
SHALL be
provided

Yes SAF is bit efficient and provide a
very low overhead on data.

Proposed
(3GPP)

MORE supports
efficient transmission
including effective
packetization and
fragmentation.
Fragmentation is
needed when an entire
sample cannot fit in
one transport packet.
The packet size
depends on several
factors such as the
server’s capability,
operator, network
conditions, etc.
Packetization involves
packetizing samples
an/or one or more of
their fragments into
transport packets.
Packetization is
provided via RTP
payload packet formats
defined in the MORE
proposal.

RME-FUNC-011
RM content
SHALL be
available in
streaming,
progressive
download and
download.

Yes LASeR inherits the progressive
download capability from SVGT1.2
and extends it to provide complete
and well-formed fragments/packets
for checking and optimisations
purposes.
The LASeR design applies to the
scene and rich-media data the
conception of streamability that
apply today to AV.
 A payload format to map LASeR
over RTP is also defined. The
aggregation format SAF can also be
packetised over RTP using the
same payload format.

Yes

Proposed
(3GPP)

Download and
progressive download
are already possible
using SVGT 1.2
In addition, the ISO
Base Media container
format also provides
ability for download,
progressive download
and streaming profiles.
MORE provides
packetization of SVG
for streaming purposes.
The ISO Base Media
Files are used by the
streaming server to
obtain synchronization
and hint track
information to form
RTP packets for

OMA-WP-Rich_Media_Environment-20081014-C Page 28 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

streaming
RME-REL-001.4
The RM service
SHOULD be able
to accept content
with a range of
packet size limits,
as defined by the
content provider.

Yes The service provider can define the
packet size of LASeR content in
order to fit to the networks limits
and to decrease the network
latency.

Yes MORE provides for
fragmentation of data
based on packet size
limits as set by the
content/service
provider.

RME-NI-001
The RM enabler
SHOULD be able
to be interface
with any and/or
multiple bearers
simultaneously

Yes The design of the LASeR engine
supports the integration within one
scene of data and streams coming
from various origins, e.g. different
HTTP servers, DVBH + 3G, HTTP
+ RTP, etc.
This can be achieved through the
'href' attribute or through
StreamHeader and
RemoteStreamHeader units.

Proposed
(3GPP/OM
A)

MORE supports rich
media delivery using
either 1-to-1 bearers
(for e.g. PSS, HTTP) or
1-to-many bearers (for
e.g. MBMS,
FLUTE/ALC) or a
combination of both.
Depending on the
service and the
terminal capabilities,
an appropriate set of
bearers can be chosen
to deliver the rich
media content. Some of
these bearers can also
be used
simultaneously.

RME-NI-002
The RM enabler
SHOULD be able
to address bundle
of stream

Yes LASeR is transport-agnostic and
can interface with any channel
bundling, e.g. MPEG-2 PS/TS, SAF
is specified for stream aggregation

Proposed
(3GPP)

MORE contains
provision for
depacketization of
streamed media and
consequent
presentation.
Packetization and
depacketization are
provided based on the
RTP payload packet
formats defined in the
MORE proposal. At the
enabler, the
depacketizer is used to
depacketize the RTP
packets.

Integration
in the
mobile
environme
nt
requireme
nts

RME-SYS-001
The RM enabler
SHOULD be able
to interface with
other resident
clients on the
phone.

No LASeR engines can be interfaced
with other applications such as
SMS and MMS clients, A/V clients,
etc.

No As MORE does not
alter the semantics of
the clients’ rendering
language, it provides
for a flexible user agent
that can be easily
integrated with other
enablers in an OMA
environment.
At the architectural
level the content will
use the same DOM
definition across

OMA-WP-Rich_Media_Environment-20081014-C Page 29 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

XHTML and SVG
allowing document
interaction.
At the API level,
MORE will be able to
interact with JAVA
applications through
the shared DOM and
the use of the JSR-226
API
At the application level
MORE will support the
URI schemes
mechanism for
invoking other
applications.
In addition, as MORE
is based on xml the RM
enabler is able to
interface (share DOM,
have script work over
document boundaries,
reuse components like
xml-parser, etc) with
the other xml-based
technologies on the
device (XHTML,
SMIL, CDF, XForms).

RME - System
Element A
(browser)
The RM Enabler
SHOULD be able
to interface with
browser client

Proposed

Being
specified

LASeR engines can be packaged as
plugins to existing browsers.
LaSeR v1 does not specify specific
interface for the browser, and let
the usage of uDOM to the
implementation phase.
LASeR v2 specify an extended
uDOM as an interface to the
browser.

Yes As MORE does not
alter the semantics of
the clients’ rendering
language and is xml-
based, it provides for a
flexible user agent that
can be easily integrated
with other enablers in
an OMA environment.
At the architectural
level the content will
use the same DOM
definition across
XHTML and SVG
allowing document
interaction.
At the API level,
MORE will be able to
interact with JAVA
applications through
the shared DOM and
the use of the JSR-226
API
It is very important to
note that although
MORE is based on
SVG Mobile 1.2 it can
be easily extended to

OMA-WP-Rich_Media_Environment-20081014-C Page 30 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

support CDF
documents in future.

RME-SEA-001
The RM Enabler
SHALL be able to
launch the
browser

Yes LASeR engines can launch external
applications, including the browser.

Yes MORE has the
provision for allowing
RM applications to
launch the browser by
using SVG 1.2 mobile
profile’s linking and
scripting capabilities.

RME-SEA-002
The RM Enabler
SHALL be able to
be launched by
the browser.

Proposed
(OMA/3
GPP)

LAseR engines can be launched by
the browser. Nothing in the LASeR
specification precludes it and
existing implementations have
already implemented this feature.
A mime type is to be specified

Yes MORE has the
provision for allowing
the browser to launch
RM applications using
existing plug-in
architecture.

RME-SEA-003
The RM Enabler
SHOULD be
integrated as a
plugin into a
browser

Proposed
(OMA/3
GPP)

LASeR engines can be plugins to
browsers.
A mime type is to be specified

Yes MORE has the
provision for
integrating RM
applications into the
browser by using
existing plug-in
architecture.

RME-SEA-004
The RM Enabler
SHALL expose
the uDOM API to
the browser

Proposed
(OMA)

Being
specified

LASeR V1specification leaves to
the implementation the integration
of UDOM within the browser. MAE
will need to decide either to leave the
usage of uDOM to the choice of
implementers or to mandate the usage
of uDOM along with LASeR v1
LASeR V2 specification will
integrate the uDOM and extend it to
the LASeR scene tree extensions.
The LASeR dynamic update
mechanism can be implemented
easily above uDOM. An
informative mapping is provided in
the LASeR specification.

Yes MORE is based on
SVG Mobile 1.2
profile, and is therefore
designed to expose the
uDOM API to the
browser.

RME-SEA-005
The RM Enabler
MAY provide
other API to the
browser

No Other API to the browser can be
defined above the LASeR user
agent.
Care has been taken to allow the
inclusion of LASeR engines into
CDF-compliant applications.

No MORE is extendible
and may provide other
API to the browser if
compatible with the
SVG Mobile 1.2
specification.

RME - System
Element B (AV
codec)
The RM Enabler
SHALL be able to
address and to
provide a tight
integration with
AV codec.

Yes LASeR is designed with a tight
integration into the MPEG terminal
model in mind, which allows
efficient interfacing with any kind
of media. Sections 3.1.1, 6.3, 6.4
and 7 define the connection of
LASeR with the MPEG terminal
model.
LASeR additionally defines overlay
= ”fullscreen” to improve the
usability of videos on mobile
devices.

Yes The MORE UA has
tight timing
synchronization and
architectural
integration with the AV
codecs associated with
SVG Mobile 1.2
profile.
MORE utilizes the run-
time synchronization
functionality that SVG
Mobile 1.2 inherits
from SMIL. These

OMA-WP-Rich_Media_Environment-20081014-C Page 31 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

attributes are
syncBehavior,
syncTolerance and
syncMaster attributes,
specified on the 'audio',
'video' and 'animation'
elements, and
syncBehaviorDefault
and
syncToleranceDefault
attributes specified on
the svg element.

RME-SEB-002
The RM Enabler
SHOULD be able
to access
Metadata stream.

Yes LASeR engines can interface with
any kind of streams.
LASeR provides the same features
as SVG for this.
SAF can carry any type of stream,
and LASeR can refer to any type of
stream.

Proposal
(3GPP)

MORE supports
metadata information
such as media
description, session
description, SVG scene
similarity, etc. are
provided.
This metadata
information is stored in
the container format, is
used for forming RTP
packet types for the
purpose of streaming.

RME-SYS-002
The RM enabler
capabilities
SHALL be
expressable
within UAPROF

No LASeR engines capabilities are
easy to express with UAprof. This
should be achieve by using other
OMA’s enablers

Proposed
(OMA)

MORE will utilize
existing UAPROF
capabilities of the
parent application (e.g.
Browser), as well as
the capabilities being
developed as part of
OMA’s Device Profiles
Evolution (DPE) work.

RME-SYS-002.1
The RM enabler
capabilities
SHALL be
advertisable by
the browser or by
the rich-media
enabler depending
on the usage
scenario

Proposed
(OMA/3
GPP)

LASeR engines can advertise their
capabilities in a variety of ways,
including the use of HTTP Accept
Headers and Media Queries. We
propose to use this to method for
that.
In complement other OMA’s
enablers can be used

Proposed
(OMA)

MORE will achieve
this via OMA’s
UAProf and DPE
solutions.

RME-SYS-002.2
The RM enabler
and the rich-
media service
SHOULD benefit
from underlying
support of
dynamic
UAPROF service.

No LASeR engines can be interfaced
with underlying support for
dynamic UAprof services.
This should be achieve by
interfacing with other OMA’s
enablers

Proposed
(OMA)

MORE will integrate
the OMA’s DPE work
which addresses the
dynamic profile update
capability.

RME-FUNC-023
The service
provider

No LASeR engines can be interfaced
with underlying support for
dynamic UAprof services.

No MORE can use
protection mechanisms
(e.g. DRM) that exist

http://www.w3.org/TR/SVGMobile12/multimedia.html#AnimationElement
http://www.w3.org/TR/SVGMobile12/multimedia.html#VideoElement
http://www.w3.org/TR/SVGMobile12/multimedia.html#AudioElement

OMA-WP-Rich_Media_Environment-20081014-C Page 32 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

SHOULD be able
to protect the RM
content.

This should be achieve by
interfacing with other OMA’s
enablers

for media constituting
the RM content.

RME-SEC-002
The RM enabler
SHOULD be able
to interface with
DRM client

No LASeR engines can be easily
interfaced with DRM tools in order
to provide appropriate protection to
RM content.

No MORE can be
interfaced with DRM
mechanisms that exist
for media constituting
the RM content.

RME-IOP-003
Service enabled
by the RM
Enabler SHALL
be available
whilst the user is
roaming on a
different network
which is capable
of RME services.

Yes This is orthogonal to any media
type.
No special roaming services are
required to allow mpeg’ part 20
data to be used across any bearers
and networks.

Yes Services provided by
MORE is agnostic of
any network as long as
the network conforms
to existing standards
based features to
support such services.
MORE uses transport
protocols such as RTP,
FLUTE/ALC, and
HTTP based on
existing standards.
No special roaming
services are required to
allow MORE data to be
used across networks.

Table 2: RME Requirements Table

Table for DIMS requirements, relevant for RME.

Requirement Groups and

detailed requirements
MPEG 4 part 20 Other technology #1

Supports Comments Supports Comments

DIMS
complement
ary general
requirements
for the
mediatype

Ref: S4-
050800
section 4.1
Number 2

Yes LASeR inherits its rendering
model from SVG Tiny 1.2, thus
achieving compatibility by
equality.

Yes MORE is centered on SVG
Mobile 1.2 specification.
Therefore it is fully
compatible to rendering
models of the SVG Mobile
1.2 specification.

Ref: S4-
050800
section 4.1
Number 7

Yes This requirement was also an
MPEG requirement when starting
the LASeR works.

Yes MORE relies on existing
highly efficient
mechanisms for
compressing embedded
media such as audio, video
and raster images. For
SVG, MORE uses GZIP
that is proven to offer high
compression rates for large
graphics content. For small
graphics content, MORE
encourages the use of raw
XML data due unnecessary
encoding/decoding
modules, and as a result
extra footprint.
Note: The choice of
compression format is not

OMA-WP-Rich_Media_Environment-20081014-C Page 33 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

dependent on the
comparison between
content or packet size.

Ref: S4-
050800
section 4.1
Number 10 a

Yes SVG-style embedding of images
and clips inside the scene
description is possible, but not
recommended since it is not an
efficient use of the MPEG
terminal model. If used, this
feature does not incur the typical
Base64 encoding overhead that
SVG incurs.
SAF packaging does not impact
the compression efficiency
beyond a very small fixed
overhead per packet (as opposed
to Base 64 encoding in multipart
packaging).

Proposal
(3GPP)

A choice for a container
format in MORE is the use
of the ISO Base Media
File Format. This format
allows the packaging of
SVG scenes and scene
updates along with other
media. Information such as
timing synchronization,
hint tracks, random access
are provided. As these
media can be stored in this
container format with their
own compression
mechanisms, the format
does not interfere or
reduce compression
efficiency of the media.

Ref: S4-
050800
section 4.1
Number 14

Yes LASeR does not mandate the
usage of a particular font system
and then allows to use any font
solution (native, device capability,
SVG font, Opentype font, other)

A fallback mechanism is provided
as per SVG.

Yes MORE fully supports the
notion of using terminal-
supplied (or system) font
capability and this is inline
with the requirement for
existing mobile SVG
implementations.

Ref: S4-
050800
section 4.1
Number 15

Yes LASeR is extensible in many
point of view:

1 – the scene description is
extensible

2 – The dynamic update
mechanism is extensible

3 -The binary encoding is
extensible (other XML data can
be encoded and transmitted e.g.:
proprietary data, CDF)

Yes The primary motivation
behind the architecture of
the MORE system is the
need for a strong
separation of interfaces
and layers. By enforcing
such a strong separation,
allows us to pick a best of
breed approach, and to
change it over time if
necessary.

Ref: S4-
050800
section 4.1
Number 22

No

Being
Specified

LASeR v1 doesn’t provide any
specification for that.

LASeR v2 introduces media chain
stats information through a new
set of XML events.

Yes MORE uses “preload”,
“postload”, and
“loadProgress” events to
realize the state of media
chains and make available
at the scene level. In
addition, the application
can make use of the
various attributes defined
by the ProgressEvent
interface to understand the
details of these event
types.

OMA-WP-Rich_Media_Environment-20081014-C Page 34 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

 Ref: S4-
050800
section 4.1
Number 23

Yes Rectangular clipping is supported
in LASeR and allows display of
rectangular parts of any content
and it is particularly suitable for
images as well as for text display
management.

Proposed
(W3C
SVG
Full)

MORE utilizes the relevant
features such as ref()
transform value, clip
preserveAspectRatio
attributes from SVG
specification. Please note
the clip attribute is not
currently supported in
SVG Mobile 1.2
specification but only in
SVG Full due to
implementation feedback
based on complexity issues
that arise from mandating
this feature. However,
MORE does not prevent
use this feature if it is
required to do so and the
implementation support for
this feature is provided.

DIMS
complement
ary updates
and
interaction
requirements
for the media
type

Ref: S4-
050800
section 4.2
Number 7

Proposed
(OMA)

Being
Specified

LASeR commands can be used in
parallel with a scripting language
using a uDOM interface. As the
LASeR scene tree is an SVG Tiny
1.2 scene tree, a uDOM interface
can be implemented within a
LASeR v1 client.

LASeR v2 will integrate and
extend the uDOM to the LASeR
scene extensions.

Yes MORE re-uses the
scripting functionality and
bindings as defined by
SVG Mobile 1.2
specification and JSR 226,
and therefore supports both
scripting languages (Ecma
and Java).

Ref: S4-
050800
section 4.2
Number 10

Yes

Being
specified

The LASeR v1 specification
defines an informative mapping
of the LASeR Commands to
uDOM instructions using ECMA-
Script, thus proving their
implementability with uDOM.
LASeR v2 will incorporate the
uDOM within the specification

Being
Specified

MORE relies on the REX
(Remote Events for XML)
initiative, a joint effort
between W3C SVG and
Web Apps working
groups. The proposed
XML update specification
will be based on a set of
requirements that are
intended to maintain
compatibility with DOM
events, declarative in
nature, and integrates well
with the WWW
architecture.
REX encoded messages
can easily implemented
using the uDOM API
using methods such as
appendChild(),
removeChild(), and
setXXXTrait().

Ref: S4-
050800
section 4.2

Yes As a LASeR scene tree is an SVG
Tiny 1.2 scene tree, LASeR
Commands apply equally to

Being
Specified

Same as above

OMA-WP-Rich_Media_Environment-20081014-C Page 35 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Number 11 LASeR and to SVG Tiny 1.2.
Ref: S4-
050800
section 4.2
Number 12

Yes The DOM Level events are part
of the LASeR specification

Yes MORE preserves the
DOM Core and DOM
Level 3 events model and
therefore remains fully
compatible with local
interactivity as defined by
these models.

DIMS
complement
ary
requirement
for
Application
features

Ref: S4-
050800
Section 9
Number 3

Being
SPecified

The LASeR v2 provides a stream
source mechanism for that

No MORE believes this is an
implementation dependent
feature and application
specific.

DIMS
complement
ary Caching
/ Storage
requirements

Ref: S4-
050800
Section 9.1
Number 6

Yes The LASeR specification
provides a Cache unit mechanism
for this functionality.
See LASeR specification, clause
7.9

Yes MORE follows the SVG
Mobile 1.2 display and
animation modules among
other to enable pre-loaded
content.

Ref: S4-
050800
Section 9.1
Number 7

Yes The LASeR specification
provides a Cache unit mechanism
for this functionality.
See LASeR specification, clause
7.

No MORE treats this as an
application specific
feature.

Table 3: DIMS Requirements Table

OMA-WP-Rich_Media_Environment-20081014-C Page 36 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

7 Evaluation of the technologies against the requirements
In this section the technologies are evaluated against the following criteria

• Ability to meet the RME requirements

7.1 MPEG4 part 20 (LASeR)
This section provides an evaluation of an MPEG4 part 20 based solution against the RME requirements and includes
additional technologies to meet the need of a complete Rich-Media Enabler

7.1.1 Alignment of LASeR with SVG Tiny 1.1 and 1.2
There is a clear consensus that the RME/DIMS enabler will be based on the SVG Tiny 1.2 specification.

LASeR is an MPEG encoding of the W3C SVG Tiny specification, then does not mandate nor prevent the XML parser and
the gzip compression to be used as defined in the SVGT1.2 specification. Compliancy with the rendering model is provided
as described in the figure below:

Figure 1: LASeR engine components and normative parts (from section 6.4 of the LASeR specification)

LASeR v1 extends the feature set of SVGT1.1, including features of SVG1.1 Full and SMIL2 which will be present in
SVGT1.2.

LASeR first amendment (called LASeR v2 in this document) will be a superset of SVGT1.2 and will complete the alignment
with the not-yet-stable features of SVGT1.2.

LASeR v1 is already able to encode and transmit SVGT1.2 (and other XML data, e.g.: proprietary extension, CDF) content
due to its generic, extensible binary encoding scheme.

The non-v1 part of the SVGTiny 1.2 or LASeR v2 content will be skipped by a LASeR v1 decoder, will be rendered by a
LASeR v2 decoder. It can also be transmitted to an SVGTiny 1.2 player depending on the implementation choice specify by
OMA.

In this document when LASeR is mentioned, it refers to features that are relevant in LASeR v1 and v2. When features are
only relevant for one version, it will be explicitly mentioned.

LASeR

decoder

LASeR

Scene

Tree

SVGT1.2

Renderer

Scene

Stream

Decoded

Access

Units

Scene

Tree

Rendered

Scene

Normative in LASeR Normative in SVG

LASeR Rendering
extension

OMA-WP-Rich_Media_Environment-20081014-C Page 37 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

7.1.1.1 LASeR scene extensions

The LASeR scene extensions cover:

• The management of any input device to ease the content adaptation to any particular MMI and terminal.

• The association of a precise timing model to any attribute.

• The clipping by a pixel-aligned rectangle with horizontal and vertical borders, which is crucial to create UI widgets.

• The possible use of any font system, including OpenType.

• A fullscreen mode for videos and images.

• A means to stop non-rendered animations to optimize CPU usage.

• The use of the SMIL mediaClipping module to allow VCR-like control of media.

• A simple way to underline text.

The overview of the components of a LASeR client and of the global architecture using MPEG4 part 20 for an application is
as follows:

SVG Scene Tree

LASeR
Commands

Binary Encoding

LASeR
Extensions

SAF

Audio Video FontImage …

Application

Network

Transport

Figure 2: Architecture of LASeR and SAF

7.1.1.2 Font

LASeR does not mandate any font system but recommends the usage of Open Type fonts. So the preferred way of sending
font information with LASeR is as a companion font stream using the OpenType format. However, there are other options:
SVG Tiny fonts can be sent separately in a companion stream (encoded as OpenType or in XML form), or in the LASeR
scene, encoded with the anyXML encoding (non-schema encoding of any XML data). An implementation of a LASeR client
with a SVG font engine would be able to render the SVG font included in the SVG/LASeR content.

It is also possible to translate SVG Tiny fonts to OpenType format.

When a requested font is not present, LASeR provides the same fallback to system/device fonts as SVG Tiny 1.2.

7.1.2 RME Dynamic updates requirements
One key additional feature provided by LASeR over the SVG Tiny 1.2 specification is the ability for dynamic modification
of the scene.

OMA-WP-Rich_Media_Environment-20081014-C Page 38 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Dynamic updates are a key to efficient representation of server-driven or user-triggered scene changes over time. This
feature, present in Macromedia Flash, is necessary to enable:

• The efficient representation of streamable cartoons,

• The partitioning of scenes into small packets that fit in size-limited delivery mechanisms (such as cell broadcast),

• The dynamic creation of answers to a user request, and their integration in the current scene,

• Or the dynamic push of content into an existing scene.

The dynamic update mechanism can be achieved with two complementary technologies: using LASeR Commands and using
a scripting mechanism.

7.1.2.1 Using the LASeR command

The LASeR Commands are a declarative way (as opposed to programmatic as in a script) of specifying changes to the scene.
The following commands are defined:

7.1.2.1.1 General commands
• Insert: to insert any element in a group, a point in a sequence.

• Delete: to delete any element by id or from a group by index, a point in a sequence.

• Replace: to replace an element by another element (by id or from a group by index), or to replace the value of
any attribute of any element.

7.1.2.1.2 Commands specified for streaming and broadcast
• NewScene: to create a new scene.

• RefreshScene: to repeat the current state of the scene, for use as a random access point into the LASeR stream
or as a means to recover from packet loss.

7.1.2.1.3 Commands defined in LASeR for additional requirements
• Add: similar to replace, but with the notion of adding to the value rather than replacing it.

• Save, Restore and Clean: to save, reload or remove persistent scene information in the form of the value of a list
of attributes. Other commands have no influence on persistent scene information.

• SendEvent: to send an event to any element in the scene.

7.1.2.1.4 Extensibility and genericity

LASeR includes a mechanism to extend the LASeR Commands to add other functionality.

LASeR Commands are not specific to LASeR, but can be used on any XML document with minimal extensions. ISO/IEC
15938-1 defines a similar mechanism as the group of commands in 7.1.2.1.1, with slightly different requirements, proving the
applicability of the concept to any XML document. One possible application of XML document update commands
generalized from LASeR Commands is to Compound Document Format (CDF), and more specifically to Web Interactive
Compound Documents (WICD) which are based on a mix of xHTML and SVG Tiny 1.2.

The LASeR specification defines an XML syntax (LAseRML) for use in authoring or other applications of XML versions of
the LASeR scenes. LASeRML is a superset of the SVG Tiny (XML) syntax. LASeR Commands, as part of the LASeR
specification, also have an equivalent XML syntax, which is immediately applicable to SVG Tiny 1.1 and 1.2 documents.

7.1.2.1.5 Timing model

A timing model is associated to the LASeR commands, allowing the player to provide a very tight synchronization, with an
accuracy specified by the content creator wishes (frame accurate synchronization, synchronization on a user interaction, on a
time basis, etc…). This timing model defines the link between the time stamps used by transport layers and the scene time or

OMA-WP-Rich_Media_Environment-20081014-C Page 39 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

composition time and is the key to any streaming and/or synchronization of scene information with other media. See § 6.4 in
the ISO/IEC 14496-20:2006 specification

7.1.2.1.6 Compatibility Issues

LASeR scenes and updates are defined as complete and well-formed packet. The first LASeR packet contains a complete,
well-formed SVG Tiny scene (with end tag) which represents the first state of the content. The next LASeR packets are sets
of commands (with end tag) to build the next states of the content. After each packet is received and each update command is
executed, the scene in the browser is a valid, well-formed SVG scene.

In the LASeR v1 specification, an informative ECMA-Script/DOM equivalent of the LASeR Commands is provided. Using
this equivalent code, LASeR Commands can be implemented at minimal cost on SVG Tiny 1.2 implementations including a
DOM interface and an ECMA-Script interpreter. This informative equivalent also serves as an indication of the complexity of
the implementation in compiled languages on top of an SVGTiny1.2+DOM player, as the total complexity of the group of
commands in 7.1.2.1.1 is less than 100 lines of code.

LASeR extends the feature set of SVG Tiny, and as such, reuses DOM Level 3 Events, also known as the XML Events
specification in order to provide a generic extensible

The usage of uDOM in LASeR v1 is possible, but not mandated. LASeR v2 will specify the usage of uDOM and its
extensions to the (few) LASeR scene tree extensions.

7.1.2.2 Updates through Scripting

In addition or in parallel to the LASeR command, the use of scripting and DOM Network API and an ad-hoc protocol to
communicate scene modification from the server to the client can be used. Note: the extra cost incurred by defining an
alternate protocol in script and the requirement of an ad-hoc server makes this solution only worthwhile in very specific
services.

7.1.3 Combination of updates
LASeR Commands are used in two contexts:

• in a timed context

• in an interactive context

LASeR Commands are used in a timed context when they are part of a LASeR Access Unit. The LASeR Access Unit has a
presentation time which is the time at which the LASeR Commands in it shall be executed. LASeR Commands from a
LASeR Access Unit are executed in step 3 of the LASeR execution model (section 6.4 of ISO/IEC 14496-20). Such LASeR
Commands can never interfere with scripts with another scriptContentType, since these are executed as part of step 4.

LASeR Commands are also used in a non-timed, interactive context when they are contained in a script element. Upon
activation of the script element, e.g. through an event channelled to the script element by a listener element, the LASeR
Commands are executed as if their presentation time was the current scene time. LASeR Commands from a script element are
executed in step 4 of the LASeR execution model (section 6.4 of ISO/IEC 14496-20). Interaction between the execution of
LASeR Commands in a script and the execution of DOM calls by a script with another scriptContentType is resolved by the
processing order of the events which trigger the scripts’ execution.

DOM calls would apply to a LASeR v1 scene tree in a LASeR v1 implementation that also implements uDOM.

Since the execution of the two flavours of LASeR Commands are clearly specified to happen in different steps of the LASeR
execution model, there can be no unforeseen interference between the two. The author can precisely predict what will
happen. For two script executions happening within the same rendering cycle, the same rule shall be applied to order any mix
of LASeR Command script and script with other scriptContentType.

7.1.4 Streaming and reliability requirements
The LASeR format allows streaming over reliable and non reliable network. As SVG Tiny 1.2 specification LASeR supports
the following scenarii:

OMA-WP-Rich_Media_Environment-20081014-C Page 40 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

• The first option is the classical “download and play” mode. The user waits until the end of the download to start
viewing the content.

• The second option is the progressive rendering mode. This mode is an improved version of the previous one
enabling visualization while downloading the content. But the downloaded content only adds new content to the
existing one, making it difficult to manage long-running documents.

In addition to this, LASeR supports true streaming, allowing long-running documents with a high-rate of updates, such as
cartoons or vector graphics commercials, as well as the synchronization of streamed scene information with other media.

7.1.4.1 Progressive download and rendering

7.1.4.1.1 In SVGT 1.2

SVGT1.2 introduces progressive rendering, and a mode where the scene time can begin to progress and rendering can start
before the end tag is received. Thus, players cannot rely anymore on the reception of the end tag to make integrity checks. If
any packet is lost, the SVG decoder will reject the content and stop rendering.

In order to allow rendering before the end of the download, SVG constraints on well-formedness have to be dropped. Once
the end tag has been received, nothing else can ever be sent any more, so the end tag is only received when the scene is at
end. In the case of an interactive scene, in order to leave to the user the opportunity to interact, the scene needs to be left
open, so the end tag is never received. As a result, a streamed SVG scene is never well-formed. The SVGT1.2 specification
works around this problem by defining the well-formedness of SVG fragments.

7.1.4.1.2 In LASeR

LASeR scenes can be modeled as a series of SVGTiny scenes. The first frame consist of the initial SVGTiny scene, the next
frames contain the differences, i.e. the set of scene updates required to transform the previous scene into the next scene.

LASeR
update

LASeR
update

LASeR
update

LASeR
update

LASeR
NewScene

What the author wants the user to see:

The LASeR stream:

time

SVG
scene 1

SVG
scene 2

SVG
scene 3

SVG
scene 4

SVG
scene …

time

SVG
scene 1

scene 2
–

scene 1

scene 3
-

scene 2

scene 4
-

scene 3
…

The fact that the scenes are equidistant is a simplification

What the browser contains after updates execution:

time

SVG
scene 1

SVG
scene 2

SVG
scene 3

SVG
scene 4

SVG
scene …

Figure 3: updates construction

OMA-WP-Rich_Media_Environment-20081014-C Page 41 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

The first LASeR packet contains a complete, well-formed SVGTiny scene (with end tag) which represents the first state of
the content. The next LASeR packets are sets of commands to build the next states of the content. Each packet is complete
and well-formed. After each packet is received and each update command is executed, the scene in the browser is a valid,
well-formed SVGT scene.

7.1.4.2 Streaming

7.1.4.2.1 In SVGT1.2

Progressive rendering is not streaming. Let us model the reception of an SVGT1.2 scene as a series of packets. Let us further
assume for simplicity that each packet contains a single top element (with children): this is not necessary but simplifies
explanations. Each packet/top element is received at a certain time, which depends on the network, and is executed ASAP.
This is impossible to synchronize, because there is no way to associate a time stamp with a scene time. If the packet is
conveyed in RTP, there is no way to translate the RTP time stamp information into scene time, in order to possibly wait
before the insertion of the element in the packet. From the other end, the author has no means to specify: this element shall be
inserted in the scene at time T.

7.1.4.2.2 In LASeR

LASeR content is always a stream. LASeR introduces the scene updates mechanism, in order to transpose to scenes the well-
known structure of video streams: intra-coded frames followed by predictive-coded frames.

In a LASeR stream, the first packet contains the initial (SVGTiny) scene. As a result, at the end of the first packet, an end tag
is received, allowing well-formedness checking and other optimizations.

The next packets contain update instructions. The instructions themselves can be expressed in XML or binary, but in both
cases are well-formed and complete. The result of the execution of the update instructions is a complete and well-formed
SVGTiny scene.

Each LASeR packet has a specific time stamp. This time stamp may need to be adapted to the underlying transport, but the
LASeR specification defines precisely how to recover the scene time information from the transport time stamp. The author
needs to specify the scene time at which each update will be executed. As a result, precise synchronization of scene updates
with media is feasible.

Within the browser, between packets, the content is complete, well-formed SVG content.

LASeR stream can be packetised over RTP using the RFC 3640 payload, other packetisations can be considered.

OMA-WP-Rich_Media_Environment-20081014-C Page 42 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

LASeR
update

LASeR
update

LASeR
update

LASeR
update

LASeR
NewScene

The LASeR stream as transmitted:

time

SVG
scene 1

scene 2
–

scene 1

scene 3
-

scene 2

scene 4
-

scene 3
…

What the browser contains after updates execution:

time

SVG
scene 1

SVG
scene 2

SVG
scene 3

SVG
scene 4

SVG
scene …

Complete
well-

formed
SVG
scene

Each is a complete well-formed SVG scene

Well-formed differences between two SVG
scenes expressed as a list of insert, delete and

replace commands

Figure 4: Overview of a LASeR stream

Tuning in into the middle of a scene stream is possible through the use of RefreshScene commands. RefreshScene commands
contain a copy of the current state of the scene which can be skipped by all LASeR players but the ones currently trying to
tune in. Not all LASeR streams have to contain RefreshScene commands, as many delivery scenarios do not require error
recovery (for example, TCP/IP uses packet retransmission to ensure error-free delivery). It is the content author’s or
provider’s choice to include RefreshScene commands into the scene stream.

RefreshScene prove useful both in streaming and in broadcast scenarios.

7.1.4.3 Reliability

The use of non reliable delivery mechanisms (such as RTP) implies potential packet loss. In order to provide error-resilient
playerq to be implemented for streamed application, LASeR specifies how to:

• Handle packet loss gracefully: after a packet loss, LASeR commands which have become meaningless are ignored.

o errors located in packets containing transient information can be recovered naturally

o errors which cause more significant damage to the scene will cause a refresh request by the user.

• Recover from packet loss:

o through the use of RefreshScene commands, a player after a packet loss is in a state similar to the “tune in”
state.

o RefreshScene commands are ignored by the players as redundant.

OMA-WP-Rich_Media_Environment-20081014-C Page 43 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

7.1.5 Caching and private data management
LASeR specifies means to achieve data management on both client and server sides. This is achieved partially by the scene
format and partially by the packaging format.

In the scene format, LASeR and SAF specify interfaces to:

• local caching of RM data on the end-user device and updating of cached RM data,

• secure temporary storage of a large amount of persistent information for content cache and offline navigation,

• content storing mechanisms and storing priority according to the rich-media service logic,

• private data permanent storage in a memory area reserved by the RM enabler.

In order to protect end-user data privacy, LASeR specifies a cookies-like mechanism to limit the above functionality. LASeR
uses signaling similar to the one defined in RFC 2965, which defines a state management mechanism for Rich Media
presentations.

7.1.6 Synchronization
LASeR extends the SVG/SMIL timing model, to make it compatible with the MPEG timing model and thus optimize its
interfaces with MPEG media decoders.

In addition, together with SAF, LASeR offers a platform for efficient and frame-accurate synchronization of media and
scene: both SVG-like scenes with SMIL animations and Flash-like scene with sequences of frames can be synchronized with
the best achievable precision.

The next table summarizes the respective synchronization features of LASeR and SVG Tiny 1.2. Note: both require the
support from an adequate transport layer to synchronize, such as SAF.

Feature SVGT1.2 LASeR

Specification of the synchronization of streams Yes Yes

Ability to synchronize of events and static animations
based on scene time with other media

Yes Yes

Ability to synchronize scene modifications with other media No Yes

Table 4: SVG/LASeR Synchronisation features table

7.1.7 Efficiency
One of the key underlying requirement when designing LASeR was the global efficiency that need to be provided. To fulfill
this objective, LASeR provides:

• the dynamic update mechanism,

• an efficient data caching management,

• a binary format, necessary for a fast parsing and a fast, bit-efficient transmission of data,

• an append mode providing means to create fluid, dynamic services, free of the one-new-page-per-request
client/server paradigm, as well as making it possible to prepare in advance multiple possible responses to user
requests.

• and together with the SAF aggregation format, a means to reduce the number of necessary http connections and the
round trip delay.

OMA-WP-Rich_Media_Environment-20081014-C Page 44 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

7.1.7.1 Binary Format

The binary format specified in LASeR allows the encoding of SVG Tiny content. It uses a compact representation for the
structure of the SVG elements and uses specific coding algorithms to encode the attribute values of the SVG elements.
Because the mobile platforms usually lack hardware float processing, the compression of these attribute values has to be
simpler than on other target platforms (PC). Complex computations that would improve the compression ratio by a small
amount at the cost of doubling the decoding time have been rejected during the standardization process. Thus, the binary
encoding of LASeR is straightforward, and its quality resides in the complexity/efficiency balance. Special care was taken for
the encoding of values for some attribute types, like list of float coordinates, vector graphics paths or transformation matrices.

The LASeR binary syntax is extensible, so that private extensions can be mixed among normal LASeR elements and
attributes, to be ignored by decoders that do not know how to process them. One possible extension is the encoding of CDF
documents with LASeR, which allows the encoding of xHTML and other XML components in the fast-to-parse any-XML
encoding extension of LASeR.

As with SVG, small media such as images and short A/V clips can be packaged with the scene. The following should be
noted:

- such embedding usually incurs, in SVG Tiny, the 33% compression efficiency penalty inherent to Base64 encoding
required for the embedding,

- the same embedding is done in LASeR at no extra cost in compression efficiency,

- as such usage does not follow the MPEG terminal model, it is recommended to avoid this mechanism in favor of the
more powerful SAF mechanism.

7.1.7.2 Server side efficiency: the append mode

Many Rich Media services rely on a key feature of LASeR: incremental scenes, made possible by the LASeR append mode.
The append mode is the possibility to create a LASeR stream containing not an independent scene, but an addition to another
existing scene.

There are two typical use cases of incremental scenes:

• Streaming style: the scene is designed as a sequence of frames, and there is a continuous stream of updates to change
the current frame into the next frame. Bandwidth usage is varying but never drops to 0. The incremental scenes of
this kind are usually best transported over streaming protocols like RTP. A typical use case is a cartoon-like
animation.

• Interactive style: the scene is interactive and user requests are processed by the server. The response to user request
is a change to the existing scene, not a new scene. Such scenario also requires continuous updates to the scene, but
the statistics of the transmission are totally different from the previous style: bandwidth is heavily used for a short
time after a user request, and then drops to 0 until the next user request. Given the variety of usages of mobiles, the
next user request could come a few seconds or a few hours later.

From a server-side point of view, the interactive transmissions can be considered as a series of separate connections, as
opposed to the continuous connection of the streaming style. It is typically implemented using separate HTTP connections,
since each data burst results from a user request. However, from a LASeR viewer point of view, it is the same scene/service
that is modified. Hence the requirement for the server to be capable of signaling an append mode: “this stream does not
contain a totally new scene, but an improvement to the scene the viewer is currently processing”.

The append mode also allows the creation in advance of multiple responses to possible user requests. If the service is
modeled as a state machine, each transition of the state machine represents a change to the current scene and may be
implemented as an append component. Careful authoring and scope management is required, in particular to avoid clashes of
id between elements added by different append components. Still, this functionality opens the way to servers caching most of
the responses to users, therefore dramatically improving the service’s performance.

OMA-WP-Rich_Media_Environment-20081014-C Page 45 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

7.1.8 Packaging
In MPEG-4 part 20, the Simple Aggregation Format (SAF) is defined with the following features:

• Simple aggregation of any type of stream, file or fragment.

• Dynamic addition of new streams/files after the start of the delivery.

• Media interleaving.

• Precise synchronization mechanisms support.

• Signalling of MPEG and non-MPEG streams.

• Optimized packet headers for bandwidth-limited networks to guarantee a very low overhead.

• Easy mapping to popular streaming formats.

• Enhanced support for progressive download.

• Real time transmission/delivery.

• Cache management capability.

• Extensibility such as adding new packet types or new stream types.

7.1.8.1 SAF Elements

The SAF specification defines the binary representation of a compound data stream composed of different elementary
streams such as LASeR, xHTML, CDF, SVG, SMIL, CMF/CMX, video, audio, image, font and metadata. Data from these
various elementary streams results in one SAF stream by multiplexing them for simple, efficient and synchronous delivery. A
SAF stream is made of SAF Access Units (AU) of the following classes:

• AUs carrying configuration information for the media or DIMS/RME decoder to be initialized.

• AUs carrying configuration information for elementary streams not carried inside this SAF stream. Streams that
need to be carried separately include streams which are started interactively, or are delivered through another
protocol.

• AUs carrying media or Scene AU.

• AUs carrying an end of stream signal, indicating that no more data will be received in an elementary stream.

• AUs carrying an indication that no more data will be received in this SAF session.

• AUs carrying cache units carrying complete scenes to be pre-loaded into the user’s cache to speed up the answering
time for future requests.

7.1.8.1.1 SAF Benefits

The main objectives of adding SAF are as follows:

• SAF provides a light mechanism that uses low memory footprint (size of the code).

• SAF provides a light mechanism that uses low run-time memory.

• SAF provides a mechanism that enables the addition of media in real time (i.e., during the dynamic
composition/creation of the contents).

• SAF provides a delivery mechanism that ensures minimal latency since the content can be parsed and decoded as
soon as it is received.

• SAF provides a delivery mechanism that enables to optimize the response size : the response can be interrupted by
the end-user when the progressive delivery is in progress, when the emitter detected the interruption it can stop the
addition/encapsulation of media within the response and then reduces the response size according to the end-user
interest, while maintaining the continuity of service.

OMA-WP-Rich_Media_Environment-20081014-C Page 46 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

SAF provides a delivery mechanism that enables to reduce the number of response when browsing. Compared to WAP
delivery mechanism where the number of requests/responses is equal to (N+1) where N is the number of media included in
the page/scene; SAF reduces the number of requests/responses to 1.

In addition, SAF may be used as payload format for streaming (over RTP/RTSP) multimedia presentation aggregating Scene
data, Still Pictures, Audio and Video. RFC 3640 may be used as an RTP payload format. The improvements of SAF in this
use case are as follows:

• SAF enables to improve the synchronization of media that have been encapsulated in the same SAF streams.

• SAF enables to send over RTP scene description and images (vectors or bitmaps).

• SAF enables to reduce the number of RTP streams by aggregating the media and scene description within the same
RTP streams: this should induce a reduction of run-time memory and CPU usage (RTP sockets are CPU and
memory demanding).

• SAF enables to add in real-time (i.e., during the delivery and content generation processes) media, graphics elements
or scene description modifications according to end-user interactions. The end-user interactions are done using a
request/response scheme like WAP/WSP or WEB/HTTP.

7.1.8.1.2 Caching and private data management

The packaging format proposed by SAF provides more features for caching / storing mechanism, based on the MPEG
model:

• The cacheUnit allows sending a pair url+scene in advance, such that when that url is requested, there is no need for a
request to the server. This content pre-load mechanism can be used to optimize the response time for
frequent/predictable user requests.

• Each stream can be declared permanent, which means that if the terminal has enough memory, it should store the
stream for a duration specified in the stream header. This allows frequently used streams to be labeled specifically so
that the device caching module can give them preference.

7.1.8.1.3 Synchronization

Scene formats require support (at least temporal signalling) from the underlying transport mechanism. When the transport
mechanism does not provide that support, as is the case with HTTP, SAF provides the support required by the scene format to
create a complete platform for efficient and frame-accurate synchronization of media and scene.

7.1.9 Integration
7.1.9.1 LASeR client

The LASeR client is composed of various independent components

OMA-WP-Rich_Media_Environment-20081014-C Page 47 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Rendering
SVG

Tiny1.1++*

SVG
Tiny 1.1++*
Scene Tree

LASeR Scene Tree
extensions

D
ec

od
in

g

LA
S

E
R

C
om

m
an

ds

D
em

ux

Video /
Audio /
Image

Decoders
Font

DecoderAPIs

LASeR data

LASeR-encoded
SVGTiny Data

Private Data

Wrapped in SAF

Specific LASeR part Common with SVGT1.1++
LASeR Scene Tree extensions

LASeR Commands

LASeR binary decoding

Stream demux

Font decoding

SVG scene tree management

SVG renderer

A/V/I decoders

LASeR Renderer
extensions

Figure 5: Component architecture of a LASeR v1 client

The Font decoder is not mandated.

*SVGT1.1++ as explain in section 7.1.1

Rendering
SVG Tiny1.2

SGV Tiny 1.2
Scene Tree

LASeR Scene Tree
extensions

D
ec

od
in

g

LA
S

E
R

C
om

m
an

ds

D
em

ux

uDOM

Video /
Audio /
Image

Decoders
Font

DecoderAPIs

LASeR data

LASeR-encoded
SVGTiny Data

Private Data

Wrapped in SAF

Specific LASeR part Common with SVGT1.2
LASeR Scene Tree extensions

LASeR Commands

LASeR binary decoding

Stream demux

Font decoding & uDOM extensions

SVG scene tree management

SVG renderer

uDOM interfaces

A/V/I decoders

uDOM extensions

LASeR Renderer
extensions

Figure 6: Component architecture of a LASeR v2 client

OMA-WP-Rich_Media_Environment-20081014-C Page 48 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

7.1.9.2 Integration with the SVGT client

Scene Tree
Management

XML parser

uDOM, JSR226

LASER Demux
And Decoding

Any
fonts systems

Common elements

Different Elements

Rendering SVG

SVG Fonts

LASER
Commands

In SVG

In LASeR

Scene Tree
extensions

Gzip/deflate

Rendering
extensions

Figure 7: Dual SVG Tiny/LASeR Client

To complement the figure above, the SVG Font subsystem can be a common element.

We estimate a dual player LASeR/SVG Tiny 1.2 to share more than 60% of the code.

The current footprint of the LASeR v1 reference software, (Jar file) in Java, non optimized, is about 100K (excluding SVG
Font, codecs, XML parser and uDOM).

7.1.9.3 Integration with the Browser

Same as an SVG Tiny player, the LASeR client or the dual LASeR/SVG client can be integrated in a browser in multiple
ways:

• As a plugin: the choice of interfacing is left to the responsibility of implementations, i.e. providing Netscape API or
to particular APIs of specific browsers.

• As a plugin using the uDOM API: the integration is more generic and offers interoperable services.

• Integrated according to CDF/WICD recommendations: the integration is generic, offers interoperable services and
compound documents are reliably rendered the same way on all implementations.

OMA-WP-Rich_Media_Environment-20081014-C Page 49 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

uDOM

LA
S

eR
updates

LASeR
scene tree
/ renderer

LASeR binary

SAF / 3GP / Multipart

Script (ECMA or Java)

xHTML DOM

xHTML + CSSA/V

HTTP

LASeR plugin xHTML browser std components

Figure 8: Architecture of LASeR as a plugin in the browser

The above works for a dual LASeR/SVG Tiny 1.2 player as plugin to a browser, and below as a CDF/WICD application.

LASeR
Updates uD

O
MLASeR

SVGT1.2
Rich Media

Engine

LASeR Binary

SAF / 3GP / RTP / Multipart / Flute

Server
LASeR/SVG + xHTML

xHTML DOM

xHTML + CSS

A/V
Player

Codecs

CDF

Server Side Architecture

Client Side Architecture

A/V
Streaming

Server

Script (Ecma or Java)

Font
other
clients
(CBMS…)

Figure 9: LASeR –CDF Architecture

7.1.9.3.1 Processing Model

Here is a copy of the LASeR execution model :

The playback algorithm of a compliant LASeR Engine shall produce the same result as the algorithm described below with
the following high-level steps for each execution cycle:

1. Compute the new scene time Ts (begin of execution cycle);

OMA-WP-Rich_Media_Environment-20081014-C Page 50 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

2. Decode any LASeR AU with a scene time below or equal to Ts, and not yet presented in earlier execution cycles;

3. Execute LASeR Commands from LASeR AUs decoded at step 2;

4. Process all events (DOM, SVG or LASeR) according to the DOM event model [3] and resolve all begin and end
times that can be resolved according to the SMIL Timing Model, in clause 10 of [SMIL2];

5. Determine active media objects by inspecting begin and end times,

6. For each active media object, present the media access unit with the normal play time equal to clipBegin + (Ts –
begin time) and clamp it using clipEnd.

7. Render the audio and visual element of the scene tree according to the SVG rendering model as described in Clause
3 of [W3C SVG11] (end of execution cycle).

As a consequence the laser processing model does not violate and is compliant with the XML processing model and allows a
safe integration within the browser. Some examples are provided in Annex 1.

7.1.9.4 Integration in the OMA environment

7.1.9.4.1 OMA DRM

The specification of the RME enabler is orthogonal to the usage of OMA DRM. Encrypting of AV stream or content as well
as decrypting process can be managed by the usual DRM client. Interface can be implemented between the RME enabler and
the DRM user agent to provide security message within the rich-media scene. (e.g.: you can not access to this content. To
access to this stream it will cost you X€)

DRM consideration are orthogonal to the media-type.

DRM considerations may leads to develop additional specification if protection of the Rich-media content itself or part of it
will be required.

7.1.9.4.2 BCAST

The BCAST specifications on ESG and Service allow Rich-Media data to be transmitted and used.

During the interim meeting in Tokyo (September 2005) it has been agreed by the BCAST group that the BCAST
specification SHALL NOT preclude the usage of MPEG-4 part 20.

The specificities of LASeR (updates, binary format and streaming) can be beneficial to a BCAST application without
modification of the actual BCAST specifications on the following points:

• Bandwidth saving

• Integration of the auxiliary data within a Rich-media service

• Creation of an interactive stream, possibly accessible from the ESG fragment or service.

7.1.9.4.3 Others OMA enabler (DCD…)

LASeR can be interface with other OMA enabler.

In particular, for DCD, specific features of LASeR such as update, streaming can be beneficial both for the creation of a DCD
content and for the rendering of a DCD application.

OMA-WP-Rich_Media_Environment-20081014-C Page 51 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

7.1.9.5 Integration in the 3GPP environment

7.1.9.5.1 LASeR in 3GPP delivery

LASeR content can take two forms:

1. LASeR scenes: The first form is like an SVG scene, with only one access unit, and no stream.

2. LASeR streams: The second form is a video-like stream, with multiple access units. Examples include cartoons.

A variant of the first form is a LASeR scene with few access units. This is in principle like a short video clip, and can be
assimilated to form 1.

For MBMS, PSS and MMS, LASeR integration is:

• LASeR scenes with just one access unit, or a few access units, behave exactly like gzipped SVG scenes, and should
be treated the same way within MBMS, PSS or MMS.

• LASeR streams behave like audio or video streams, and as such, should be treated the same way as video or audio
streams within MBMS or PSS. It does not seem appropriate to send large cartoon streams as part of an MMS.

• LASeR uses the payload format RFC3640 for RTP streaming.

7.1.9.5.2 LASeR in 3GPP Extended File Format

LASeR content can be stored within files compatible with the 3GPP Extended File Format. As a LASeR stream is a timed
stream, made of AUs, the storage of LASeR streams in 3GP files is straightforward and similar to the storage of audio or
video streams. Each LASeR AU is stored as a sample. All these samples form a LASeR track identified by a four character
code. The configuration for the LASeR decoder is stored as an entry the sample description box. In case of a LASeR stream
comprising only one AU, it is also possible to store this AU, as it is done in the 3GPP specification for SMIL presentation,
i.e. as a primary item of the file, using the Metadata box structure.

7.1.9.5.3 SAF and the 3GPP extended file format

SAF is not a file format but a packaging format. 3GPP extended is actually limited in functionality:

• No streaming

• No possibility to add a stream in a 3GPP Extended File which progressive download has already started

SAF can be combined with the 3GPP extended file format in order to provide additional functionality while keeping
backward compatibility.

An extension of the 3GPP file format will be required to:

– to make it efficient in streaming mode when a new stream is added in band

– to limit ‘moov’/’moof’ parsing when it is not required, to reduce memory consumption

7.1.9.6 Integration in 3GPP 2 environment.

CMF components can be embedded in SAF streams to achieve compliance with 3GPP2.

OMA-WP-Rich_Media_Environment-20081014-C Page 52 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

7.2 The Mobile Open Rich-media Environment (MORE)
7.2.1 Overview

Figure 10: GENERAL ARCHITECTURE OF THE RICH MEDIA SYSTEM

The rich media system can be perceived as client-server architecture, comprising of 3 main components: The rich media
server, transport mechanisms and the rich media client. Figure 1 illustrates the general architecture. The server takes as input,
rich media content comprised of SVG, discrete (e.g. images) and continuous (e.g. audio, video) media. SVG content is
represented as scenes and can be dynamically updated through scene updates. The rich media content can be encapsulated
into a container format, containing additional information such as media synchronization, metadata, and hint tracks for
packetization. The system then utilizes various transport mechanisms for 1-to-1 and 1-to-many protocols for download,
progressive download and streaming scenarios as described in Section 9. The content is played on the client, allowing for
local and remote interactivity of feedback and data requests. The MORE system is based on a non monolithic architecture
emphasizing on a strong separation of interfaces and layers. This allows the flexibility of choosing the best of breed approach
for a particular use case, and to change over time if necessary. It also minimizes the dependency on services in one layer to
achieve performance in a higher layer.

7.2.2 Scene and Scene Updates
One of the motivations for rich media services is the ability to receive rich media content with minimal latency. In order to do
so, the content or ‘scene’ on the client must be able to be dynamically updated with small changes rather than a completely
new document being re-sent every time. Although SVG Mobile 1.2 supports prefetching for progressive downloading, during
real-time streaming, a scene may change through animations and changes in scene states. This sequence of scene description
and its spatial/temporal modifications needs to be streamed from the server to the players on the client device.

7.2.2.1 Scene

Scene describes the spatial organization of scene elements, the temporal organization of scene elements, synchronization
information, and interaction among the elements. The scene presentation format and the rendering model are based on the
Scalable Vector Graphics (SVG) format, a W3C Recommendation for representing two-dimensional graphics in XML
language. Besides representation of graphics, SVG also supports a rich interaction based on DOM Level 3 Events and a
complex animation model borrowed from SMIL specification.

A scene is typically first sent to the client to initialize the presentation layout. A scene can either be a complete SVG
document or the content enclosed within <g></g> tags where the g element rendering will start when the g closing tag has
been parsed and processed and when all internal and external resources required by the scene have been resolved. However, it
is important to note that the initial scene delivered to the client to initialize the presentation and layout must be a complete
and conforming SVG document. This helps the client to compute the initialization parameters such as ‘viewport’, ‘viewbox’,

OMA-WP-Rich_Media_Environment-20081014-C Page 53 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

and ‘aspectRatio’ of the rich media presentation. Further, a scene may use elements (<use>) previously defined in the
<defs></defs> block or other objects within the scene that are not discarded by the client. This is similar to the prefetch
functionality provided by SVG for progressive download.

7.2.2.2 Scene Updates

Scene updates refer to one or more incremental updates to the SVG Micro Document Object Model (uDOM) that get sent to
the client device during streaming. These updates include element addition; element deletion; element replacement, element
attribute updates and new scene operations. The new scene operation can be performed by replacing the entire SVG
document or the logical scene that the user is visually engaged at that point in time i.e. typically the content enclosed with
<g></g> tags as explained above.

 Note that the updates can also be a combination of one or more of these operations depending on the desire of content
provider. The client could potentially choose to update the SVG uDOM with this content update information without
destroying and recreating the SVG uDOM for every streamed packet of information.

7.2.2.2.1 Scene Update syntax

The scene update syntax in MORE will follow the REX (Remote Events for XML) initiative in W3C that is spear-headed by
SVG WG in an effort to meet the requirements of RME/DIMS specification. This is evident with the creation of a new Task
Force (TF) in conjunction with Web Apps API WG to fast track this activity to meet the DIMS/RME requirements. The
current draft specification is available at http://www.w3.org/TR/rex/ . The update syntax is compatible to the SVG and
uDOM APIs as defined by SVG Mobile 1.2 specification.

The proposed XML update specification is be based on a set of requirements that are intended to maintain compatibility with
DOM events, declarative in nature, and integrates well with the WWW architecture. The current charter of the Web
Applications API will be responsible for maintaining this specification. Note that the syntax for update mechanism is not
limited only to SVG but also extensible to other mark-ups, besides being very efficient and light weight for platforms that are
already capable of supporting mobile SVG standard.

The following figure demonstrates the flow of delivering the scene and scene updates from the Rich Media server to the
client, and the visual representation of the transmitted content at the client terminal.

http://www.w3.org/TR/rex/

OMA-WP-Rich_Media_Environment-20081014-C Page 54 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Figure 11: Illustration of Scene and Scene Updates delivery and realization.

Rich Media
Streaming

Server

Rich Media
Client

Terminal

Transmission of an Initial Scene with a rectangle element.

Transmission of Scene Update with a ‘'DOMAttrModified'
operation. The update changes the postion ‘x’ of the
rectangle

Transmission of Scene Update delivery with a
'DOMNodeInserted' operation. Here a new circle is added
to the current scene.

Transmission of Scene Update delivery with a
'DOMNodeRemoved' operation. Here the rectangle is
deleted from the current scene.

Transmission of Scene Update with a ‘replace’ operation.
Here the circle is replaced with a new ellipse.

Transmission of Scene Update with a ‘group’ of updates,
where a circle is appended and ellipse is removed.

OMA-WP-Rich_Media_Environment-20081014-C Page 55 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

7.2.2.3 Temporal Management of Scenes and Scene Updates
For temporal management, there is a need for an absolute rich media presentation start time denoted by TpresStart.
Every scene and scene update sample is associated with a timestamp relative to this overall rich media
presentation start time (TpresSart). This relative scene/scene update timestamp refers to the actual rendering time or
the time at which the scene/scene update is rendered on the client.

For example, if the corresponding timestamp of the first scene is TS1, this is rendered at TpresStart + T S1. Similarly if
a succeeding scene update sample has a time stamp of T SU1, it is rendered at TpresStart + T SU1. However, if any
scene or scene update sample arrives at the receiver at a time greater than it’s rendering time, it may be ignored,
simply rendered (in case of static objects) or retained for error concealment depending on the client’s
implementation capability. The retained sample can be utilized for the following scenarios:

1) Scene content playback. For e.g. the content at the client is required to playback based on user
interaction from time zero of the presentation time.

2) Can be utilized for repairing the uDOM structure.

3) Error concealment based on client’s needs.

OMA-WP-Rich_Media_Environment-20081014-C Page 56 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Figure 12: temporal management of scene and scene update

7.2.3 SVG and Associated Media
SVG supports media elements similar to Synchronized Multimedia Integration Language (SMIL) media elements.
Continuous or real time media elements define their own timelines within their time container. All SVG media elements
support the SVG timing attributes and run time synchronization.

TpresStart+T S1

Local Time=0secs

TpresStart+T SU1

Local Time = 15secs

TpresStart+T SU2

Local Time = 30secs

TpresStart+T S2

Local Time = 0secs

Local time = local rendering time relative to current document timeline ----->

TpresStart+T SU3

Local Time = 15secs

TpresStart+T SU4

Local Time = 30secs

New document
=> Intialize local
time to 0secs

Scene
(10:30:00)

Scene Update
(10:30:15)

Scene Update
(10:30:30)

Scene
(10:31:00)

Scene Update
(10:31:30)

Scene Update
(10:31:15)

New document
=> Intialize local
time to 0secs

OMA-WP-Rich_Media_Environment-20081014-C Page 57 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

7.2.3.1 Media Types

The media elements are audio, video and animation. However, particular platforms may have restrictions on the
number of audio voices or channels that can be mixed, or the number of video streams that may be presented
concurrently. Since these vary, the SVG language itself does not impose any such limits on audio or video.

7.2.3.2 Referencing Media

The real time media elements are audio and video, and are referenced as follows in SVG:

<xlink:href="example1.3gp" volume=".8" type="video/H264" x="10" y="170">

<xlink:href="example2.3gp”volume="0.7" type="audio/AMR-WB+" begin="mybutton.click" repeatCount="3">

Discrete media such as images are referenced in SVG using the ‘image’ element, such as:

<image x="200" y="200" width="100px" height="100px" xlink:href="myimage.png">

Furthermore, SVG can also reference other SVG documents, which in turn can reference yet more SVG documents through
nesting. The referenced media elements can be linked through internal or external URLs in the SVG content. Here, internal
URLs may refer to files internal to the SVG file or inline the host document, or within the container format. This applies to
external URLs in a similar fashion.

The animation element specifies an external referenced SVG document or an SVG document fragment providing
synchronized animated vector graphics. Like the video element, the animation element is a graphical object with size
determined by its x, y, width and height attributes. For example:

<animation begin="1" dur="3" repeatCount="1.5" fill="freeze" x="100" y="100" xlink:href="myIcon.svg"/>

Also, SVG is capable of embedding media, like using Base64 encoding to embed images in the SVG file.

7.2.4 MORE Client Architecture
The MORE client is a lightweight entity present on the mobile terminal (Figure 4). This is substantiated due to the fact that it
builds on top of existing application enablers such as SVG Mobile 1.2, ESMP, and XHTML-basic and thereby re-uses their
associated underlying components such as the XML parser, rendering libraries, media decoders, and compression techniques.
The client uses media packet depacketizers to obtain the different media that constitute the scene and scene updates in the
case of real time streaming. In the case of download, the media is embedded media is internally (locally) or externally
referenced. The synchronization module helps synchronize the frame rate and timing of continuous media with that of the
non-frame based SVG content. The SVG engine in turn takes the different media and timing information as input to compose
the dynamically rich multimedia presentation. The client is also responsible for transmitting any feedback occurring during
interaction.

OMA-WP-Rich_Media_Environment-20081014-C Page 58 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Figure 13: MORE Client Architecture

7.2.4.1 Synchronization Module

A rich media session comprises several media streams, and in the case of RTP, each is transported via a separate RTP
session. Synchronization is first performed on the transport level (using RTP and NTP timestamps) and used as input to
synchronization at the application level (SMIL based synchronization). At the application level, MORE utilizes the run-time
synchronization functionality that SVG Mobile 1.2 inherits from SMIL 2.0 [13]. These attributes are syncBehavior,
syncTolerance and syncMaster attributes, specified on the 'audio', 'video' and 'animation' elements, and syncBehaviorDefault
and syncToleranceDefault attributes specified on the SVG element. For more information, please refer to Annex B.

Delivering media streams separately and resynchronizing them at the receiver, rather than being delivered bundled together
has several inherent advantages: This model better reflects the preferences of the server or receiver. For example, in a video
conference application, participants often prefer audio to video. In addition, different media can be assigned priority levels for

http://www.w3.org/TR/SVGMobile12/multimedia.html#AnimationElement
http://www.w3.org/TR/SVGMobile12/multimedia.html#VideoElement
http://www.w3.org/TR/SVGMobile12/multimedia.html#AudioElement

OMA-WP-Rich_Media_Environment-20081014-C Page 59 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

differing levels of error correction. In the case of bundled transport, all receivers would receive all media, which often is an
issue for multiparty sessions using multicast distribution.

Annex C provides a detailed explanation of the synchronization process.

7.2.4.2 Resynchronization and Tune-In

During a rich media service, it is important for the clients to be able to connect and access the current streamed content, i.e.
tune-in with minimal latency and data inaccuracy. MORE has several mechanisms to aid this purpose:

Random access points: An SVG SCENE or SCENE UPDATE for a new scene operation, can function as a random access
point. Element add, delete, replace, and attribute update operations cannot function as random access points as they depend
on previous content. A given SVG scene sample can be identified by the client to be a random access point by the random
access bit (`A’) set to 1 in the RTP payload header (section 7.2.6) or from the sync sample box (Section 7.2.5). Random
access points are similar to INTRA frames in video. When tuning into a broadcast channel, the client can wait for the next
random access point.

Time Synchronization: Packets of data received by the client are associated with timestamps relative to the overall
presentation time container. Further, the sequence numbers associated with the packets determine the relative ordering. This
information helps the client to decode and sample the data correctly and using discretion (e.g. ignoring late packets) regarding
packets arriving later than the scheduled sample time.

7.2.4.3 Remote Interaction

During a rich media presentation, the client can request more information, update the content, or even send information back
to the server. SVG provides local interaction through declarative animation and scripting. SVG Mobile 1.2 supports remote
interaction via the Connection interface API [14] for socket-level communication. The API can be used for unicast based
feedback over the HTTP/TCP protocol. Note that the Connection API in conjunction with uDOM support can also offer
AJAX-like functionality.

Rather than advocating a particular transport mechanism for feedback, the MORE system focuses on a broader set of
solutions particularly for remote interaction and mechanism for mapping local interactivity into remote commands for
feedback and forward transmission. In the subsections below, details of the user events during interaction of rich media have
been identified. These events are processed either locally or remotely, and be sent with either high delay or low delay,
depending on the demand of application.

7.2.4.3.1 Locally and Remotely Processed Events

Application scripts used to process user interaction can be saved either on the client/UE side or on the server side, with the
choice being application-specific.

Locally processed events are application scripts first processed on the client-side and if needed are transmitted to the server
from the UE. For certain applications, scripts may be saved on the UE side. This can greatly reduce the burden of the server
and facilitates the local interaction. For example, in interactive TV, manipulation of the user interface can be realized
immediately at the UE side, and then some form of data can be sent to the server. In this case, the user may choose a channel;
a script will process this event and send a PLAY request to the server. This request contains the information about the
selected channel. Based on such information, the server may start a new broadcasting or downloading session to transmit the
requested media data.

Remotely processed events are application scripts processed on the server side directly. In such a case, the user events are
directly sent from the UE to the server without any initial processing. One possible reason for processing the data on the
server side could be the security issue. The server in this case hides all details from the end user, so that the client only needs
to report something like ‘which button has been clicked by the user’ or ‘which text has been input by the user’, and so on.

http://www.w3.org/TR/SVGMobile12/svgudom.html#global::Connection

OMA-WP-Rich_Media_Environment-20081014-C Page 60 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

7.2.4.3.2 Generic Feedback Format

The SVG based feedback information is in the form of a text payload. The payload has two parts. The first part contains the
MSG_ID, ELEMENT_ID and the EVENT, where the MSG_ID is a unique identifier to identify the feedback message from
the client, ELEMENT_ID is the ID of the source element in the SVG DOM that triggers the event, and EVENT is an SVG
event or a user defined event.

The actual feedback data is stored after the first part as a series of octets. This data may contain attributes of the SVG event
itself [9].

 For example the X and Y positions where the button was clicked may be directly transmitted to the server and the server can
process the feedback remotely.

MSG_ID=1;ELEMENT_ID=”my-button1”;EVENT=”click”;[OCTET1OCTET2….OCTETN];

The above example consists of an SVG scene with a set of buttons to select a movie. On clicking one of the buttons, the
client stores the X and Y positions where the button was clicked. This information is formulated into a remotely processed
feedback message to the server. Octets store information such as clickX and clickY in this example. However, the actual
feedback data can also contain the processed information like which movie the user selected. In this case the octets may
contain information like “movieSelected= Lord of the Rings”. This is an example of a locally processed event. Therefore, on
clicking one of the buttons in the scene, a script basically stores this value in a field called movieSelected. This information is
formulated into a locally processed feedback message to the server. Note that the information or the stream of octets sent as
part of the feedback payload is left to the discretion of the service or application.

Note that there is no particular restriction on the values of the octets in the feedback, but should follow a
convention known to the service, i.e. the server and the clients.

7.2.4.4 Events and Event Management

The supported local events and their management in MORE are derived from SVG Mobile 1.2 and DOM Level 3 events
model. They include DOM Events (focus, activate, mutation, etc), SVG Events (connection, load, etc.) and general XML
events (user events, timing, key, and pointer events). For further information, please refer to Annex A.

7.2.4.5 Browser Interaction

Integration to the browser in MORE will follow and leverage the work of W3C Compound Documents Format (CDF)
working group. The group is currently looking at various issues with combining multiple mark-up languages (XHTML+SVG,
etc.) such as seamless event propagation, user interaction and rendering. MORE supports embedding SVG Mobile 1.2
content into XHTML document using the <object> tag through browser’s standard plug-in architecture. However, in the long
term MORE shall be extensible to support the Compound document profiles, both CDR and CDI.

The Document Object Model (DOM) API supported in MORE is based on SVG DOM subset (uDOM) as defined in the SVG
Mobile 1.2 specification. The motivation for uDOM support is to provide an API that allows dynamic manipulation of rich
media content including modification of attribute and property values, creation of elements, event listener
registration/removal and the ability to start or end media objects including animations, video, and audio. Scripting in MORE
is handled via the ‘script’ element that contains executable content either through ESMP source code or compiled code such
as Java (JAR archive that is compatible with JSR 226 API).

7.2.5 Container Format
SVG supports media elements similar to Synchronized Multimedia Integration Language (SMIL) media elements. The
continuous media elements in particular, contain their own pre-defined frame based timing. The server is responsible for
generating and transmitting packets containing rich media data to the clients in a temporally compliant manner with low
delay request.

A container format would help in efficiently packaging the different media, providing timing synchronization, and enabling
clients to realize, play, or render rich media content. The actual container used for rich media services, would however
depend on the type of media (whether it is just SVG and XML based technologies, or contains other time based media such
audio, video, etc.) and the nature of the application (download, progressive download, streaming for example).

OMA-WP-Rich_Media_Environment-20081014-C Page 61 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Multipart MIME (MMIME) have recently taken on an important role in Web applications for HTTP based Unicast services.
This MIME type defines how multiple data parts can be included within a single message. These parts can be regular text
files, HTML documents, or binary data (such as images), where the multipart specification defines how these messages are
combined together, as well as how binary data are encoded within the message. The different parts are placed in a single
message, one after the other, separated by a special divider. This divider or boundary is a text string, defined in the MIME
multipart content-type header field that precedes the entire message. This format is useful for download, and when time
synchronization between media is not required.

ISO defines ISO Base Media File Format as a basis for developing a media container with various usages (download,
progressive download and streaming). 3GPP and 3GPP2 derive file formats from the ISO Base File Format with differences
being in the types of codecs supported in these formats. In MORE, we define some simple extensions the ISO Base Media
File Format, conforming to the box semantics defined in it. This is only one of many choices provided for rich media services
when a container format is needed. Provisions could then be explored on possible derivations to 3GPP and 3GPP2 file
formats.

As of today, there are no solutions for embedding graphics media (SVG) into 3GPP ISO Base Media File Format, for
progressive download or streaming of rich media content. Although previous work for transmitting a multimedia presentation
comprising of several media objects within a container exist, the current solutions for vector graphics in 3GPP are only
limited to download and play or otherwise known as HTTP streaming. MORE extends the file format’s box hierarchy by
adding relevant boxes to incorporate SVG as a new media. By adding an additional media track, leveraging the use of time
synchronization along with existing audio and video track information, the solution is relatively simple and is extensible to
other media formats if needed.

For more information, please refer to the MORE detailed proposal.

7.2.6 Transport Mechanisms

Figure 14: TRANSPORT SCENARIOS HANDLED BY MORE

OMA-WP-Rich_Media_Environment-20081014-C Page 62 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

7.2.6.1 Overview

The transport mechanisms support rich media delivery in the following modes: Unicast download (HTTP/TCP or MMS
protocol), broadcast/multicast download (FLUTE/UDP), unicast streaming and broadcast/multicast streaming (RTP/UDP).
For download mode, reliability is guaranteed by existing mechanisms in the transport and network layers, and no error
resilience tools need to be designed at the application layer for rich media delivery. However, rich media transport in
streaming mode is more challenging with UDP being unreliable. Therefore, the RTP design should provide some error
resilience tools to help the media decoder cope up with unreliable transport.

SVG is traditionally considered to be a discrete media and hence no RTP payload format has been defined. It has been
transported only in download and progressive download mode. With increasing richness and dynamism in the SVG
presentations, it can now be considered as a continuous media. Consequently, we define an RTP payload format for SVG.
Rich media is a combination of continuous media and discrete media, so rich media streaming should uses relevant transport
mechanisms for these two media types. Rich media streaming is thus naturally realized by (a) streaming continuous media
like SVG, video and audio (b) downloading the discrete media like images

The following sub-sections provide for a transport mechanism for supporting the download of SVG over FLUTE or the User
Datagram Protocol (UDP). They also provide a specification of an RTP payload format that enables live streaming and the
streaming of rich media content. Here, rich media content is encapsulated in RTP packets based upon the payload format at
the sender.

For more information, please refer to the MORE detailed proposal.

7.2.7 Compression
The use of compression and content specific encoding techniques are economically driven decisions. Rich media content
consists of SVG scenes and scene updates along with other referenced media. For streaming purposes, existing compression
methods can be used for referenced media. However, compressing small sized SVG does not yield high benefits with the
available bandwidth in today’s networks. For large content, MORE recommends using Gzip as it results in high compression
ratio. Hence, there is no specific need for introducing a new compression mechanism for rich media. Note however, that
MORE does not preclude application of a specific encoding scheme that is widely adopted in the industry. This approach
may be modified depending upon the outcome of the W3C work on XML compression as it tries to address compression for
arbitrary XML data and not schema specific. In any case, it is important to view any encoding and compression decisions as
orthogonal and separable from any base design decisions.

7.2.8 Conclusion
We present solutions that address various technology components needed for providing mobile real-time, interactive and
streaming services. The solutions include dynamically delivering and updating scene content, a storage format for SVG
content based on the ISO Base Media File Format including media synchronization, transport mechanisms and packetization
for SVG and its discrete/continuous referenced media, and user interaction.

7.3 Summary
In the evaluation of the two main proposals received, namely those based on MPEG 4 part 20 and MORE, both can form the
basis of meeting the RME requirements by meeting the vast majority of requirements directly allowing the residual
requirements to be met through specificity in RME if the requirements remain necessary to be met.

Some common aspects have emerged from the proposals, for example:

• The scene description being based on SVG Tiny 1.2

• The need for any extensions beyond SVG Tiny 1.2 to be realized consistent with the rules of SVG.

• The need for a scene update mechanism

• The need to support streamed, e.g. broadcast, and non-streamed delivery.

However there are differences between the proposals, for example, the means to encode and convey the scenes and updates
that need to be addressed.

OMA-WP-Rich_Media_Environment-20081014-C Page 63 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Appendix A. Change History (Informative)

Document Identifier Date Sections Description
OMA-WP-RME-20051004-d 02 Oct 2005 all Initial draft providing the basic template
OMA-WP-Rich-Media-Environment-
20051205-D

05 Dec 2005 1 Scope

OMA-WP-Rich-Media-Environment-
20060127-D

27 Jan 2006 5.1 Presentation of MPEG4part20

OMA-WP-Rich-Media-Environment-
20060310-D

10 Mar 2006 3.3 Abreviations and Annex1

OMA-WP-Rich-Media-Environment-
20060315-D

15 Mar 2006 6 Inclusion of requirements and tables.

OMA-WP-Rich-Media-Environment-
20060328-D

28 Mar 2006 7.1 Detailed description of MPEG4 part 20 proposal

OMA-WP-Rich-Media-Environment-
20060406-D

06 Apr 2006 6
6
5.2
7.2
6

Inclusion of document 2006-153
Inclsion of document 362R04
Inclusion of document 2006-0103R03
Inclusion of document 2006-121R1
Inclusion of document 2006-0159R2

OMA-WP-Rich_Media_Environment-
20060711-D

11 Jul 2006 4
7.3

Introduction and Summary sections completed
Comments removed

OMA-WP-Rich_Media_Environment-
20080408-D

09 Apr 2008 All Editorial updates:
- 2008 template and styles
- History box fixed
- Headers fixed

OMA-WP-Rich_Media_Environment-
20081014-C

14 Oct 2008 All Status changed to Candidate by TP:
 OMA-TP-2008-0376-
INP_RME_V1_0_ERP_for_Candidate_Approval

OMA-WP-Rich_Media_Environment-20081014-C Page 64 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Appendix B. example for the compliancy of LASeR with the XML
processing model

Here is an example of a SAF + LASeR XML description of an application:

<?xml version="1.0" encoding="UTF-8"?>
<!-- authoring wrapper: does not exist in the binary -->
<saf:SAFSession xmlns:saf="urn:mpeg:mpeg4:SAF:2005"

xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns="http://www.w3.org/2000/svg"
xmlns:ev="http://www.w3.org/2001/xml-events"
xmlns:lsr="urn:mpeg:mpeg4:LASeR:2005">

<!-- first packet containing the encoding parameters -->
<saf:sceneHeader>

<lsr:LASeRHeader .../>
</saf:sceneHeader>

<!-- first scene packet containing a new scene
the time information allows sending the packet in advance
and presenting the updates at the right time -->

<saf:sceneUnit time="0">
<!-- the first packet of most scenes is a NewScene update

containing the first "state" of the application -->
<lsr:NewScene>

<!-- simple SVG scene, complete, represents the initial state
of the application -->

<svg id="root" width="180" height="177" viewBox="0 0 180 177">
<rect id="rect" transform="translate(90 88)"

stroke="rgb(0,0,0)" fill="rgb(0,0,255)"
stroke-width="3" width="40" height="60"/>

</svg>
</lsr:NewScene>

</saf:sceneUnit>

<!-- list of updates to be executed at time 3s
(3000 with default time resolution) -->

<saf:sceneUnit time="3000">
<lsr:Replace ref="#rect" attributeName="stroke"

value="rgb(255,0,0)"/>
<!-- any number of updates can be placed here -->

</saf:sceneUnit>

<!-- update to be presented at 5s -->
<saf:sceneUnit time="5000">

<lsr:Replace ref="#rect" attributeName="fill"
value="rgb(127,51,204)"/>

</saf:sceneUnit>

<!-- any number of additional sceneUnit or other media headers
or units can be placed here -->

<!-- last packet of the application, signals that resources can be
reclaimed -->

<saf:endOfSAFSession/>

</saf:SAFSession>

OMA-WP-Rich_Media_Environment-20081014-C Page 65 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

 Compared progressive rendering in SVG and LASeR

Example of a SVG file to be progressively rendered:

<?xml version="1.0" encoding="iso-8859-1"?>
<svg width="176" height="144" viewBox="-4593 -100 9197 5749">

<g fill="#B7DDC8" stroke="black" stroke-width="1">
<rect id="reg00" x="-4593" y="-100" width="9197"

height="5749" fill="#EEEEEE"/>
<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>
<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>
<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>
<path id="reg10" fill="white" d="M2758 3969l-12 0 0 -14 ..."/>
<path id="reg02" fill="white" d="M1892 3661l2 -25 -13 ..."/>
<path id="reg43" fill="white" d="M927 2945l0 -23 -14 ..."/>
<path id="reg18" fill="white" d="M1767 2154l-32 -39 0 ..."/>
<path id="reg25" fill="white" d="M925 2945l131 0 0 -9 ..."/>
<path id="reg19" fill="white" d="M323 4070l15 14 0 13 ..."/>
<path id="reg04" fill="white" d="M123 2716l762 -37 15 ..."/>
<path id="reg26" fill="white" d="M523 1924l73 35 14 7 ..."/>
<path id="reg44" fill="white" d="M252 3409l0 216 31 36 ..."/>
<path id="reg32" fill="white" d="M-1277 2679l2 74 0 885 ..."/>
<path id="reg03" fill="white" d="M-3079 2509l852 127 2 0 ..."/>
<path id="reg05" fill="white" d="M-4404 1383l27 -39 608 ..."/>
<path id="reg29" fill="white" d="M-3360 1472l50 9 404 ..."/>
<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>
<path id="reg38" fill="white" d="M-3360 1472l-409 -34 ..."/>
<path id="reg13" fill="white" d="M-3310 1481l27 -321 ..."/>
<path id="reg48" fill="white" d="M-3838 1l384 62 389 ..."/>
<path id="reg27" fill="white" d="M-2327 1137l-73 -76 ..."/>
<path id="reg51" fill="white" d="M-1319 1100l-1000 ..."/>
<path id="reg35" fill="white" d="M-283 965l-59 -624 ..."/>
<path id="reg42" fill="white" d="M-1319 921l1036 44 ..."/>
<path id="reg28" fill="white" d="M-1346 1881l13 -372 ..."/>
<path id="reg17" fill="white" d="M35 2094l17 11 15 0 ..."/>
<path id="reg06" fill="white" d="M-1346 1881l283 6 3 ..."/>
<path id="reg37" fill="white" d="M-1275 2753l-2 -74 ..."/>
<path id="reg24" fill="white" d="M-342 341l59 624 0 ..."/>
<path id="reg50" fill="white" d="M677 1564l-110 -200 ..."/>
<path id="reg16" fill="white" d="M567 1364l110 200 ..."/>
<path id="reg23" fill="white" d="M669 713l27 25 29 ..."/>
<path id="reg14" fill="white" d="M1244 1669l73 560 ..."/>
<path id="reg15" fill="white" d="M1290 1619l375 -39 ..."/>
<path id="reg36" fill="white" d="M2156 2257l-14 0 0 ..."/>
<path id="reg39" fill="white" d="M2744 1899l-190 39 ..."/>
<path id="reg33" fill="white" d="M3452 1451l-75 -36 ..."/>
<path id="reg20" fill="white" d="M3898 660l71 344 29 ..."/>
<path id="reg47" fill="white" d="M3350 2092l71 -12 -19 ..."/>
<path id="reg49" fill="white" d="M3021 1975l0 11 -17 ..."/>
<path id="reg30" fill="white" d="M3840 671l12 0 15 ..."/>
<path id="reg22" fill="white" d="M3625 1144l142 -23 ..."/>
<path id="reg31" fill="white" d="M3452 1451l-31 51 ..."/>
<path id="reg07" fill="white" d="M3625 1451l13 -13 ..."/>
<path id="reg46" fill="white" d="M3552 733l271 -34 ..."/>
<path id="reg40" fill="white" d="M3956 1250l-14 -3 ..."/>
<path id="reg21" fill="white" d="M3294 1787l41 229 ..."/>
<path id="reg01" fill="white" d="M-3017 4994l-17 -13 ..."/>
<path id="reg08" fill="white" d="M3350 1773l-15 36 0 ..."/>
<path id="reg12" fill="white" d="M-2152 4659l16 -9 -..."/>
<path id="reg09" fill="white" d="M3050 1978l-32 62 ..."/>

</g>
</svg>

OMA-WP-Rich_Media_Environment-20081014-C Page 66 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Here is a proposed packetisation in SVG:

<?xml version="1.0" encoding="iso-8859-1"?>
<svg width="176" height="144" viewBox="-4593 -100 9197 5749">

<g fill="#B7DDC8" stroke="black" stroke-width="1">
<rect id="reg00" x="-4593" y="-100" width="9197"

height="5749" fill="#EEEEEE"/>
<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>
<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>
<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>
<path id="reg10" fill="white" d="M2758 3969l-12 0 0 -14 ..."/>
<path id="reg02" fill="white" d="M1892 3661l2 -25 -13 ..."/>
<path id="reg43" fill="white" d="M927 2945l0 -23 -14 ..."/>
<path id="reg18" fill="white" d="M1767 2154l-32 -39 0 ..."/>
<path id="reg25" fill="white" d="M925 2945l131 0 0 -9 ..."/>
<path id="reg19" fill="white" d="M323 4070l15 14 0 13 ..."/>
<path id="reg04" fill="white" d="M123 2716l762 -37 15 ..."/>
<path id="reg26" fill="white" d="M523 1924l73 35 14 7 ..."/>
<path id="reg44" fill="white" d="M252 3409l0 216 31 36 ..."/>
<path id="reg32" fill="white" d="M-1277 2679l2 74 0 885 ..."/>
<path id="reg03" fill="white" d="M-3079 2509l852 127 2 0 ..."/>
<path id="reg05" fill="white" d="M-4404 1383l27 -39 608 ..."/>
<path id="reg29" fill="white" d="M-3360 1472l50 9 404 ..."/>
<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>

<!—SVG renderer will try to render here -->
<path id="reg38" fill="white" d="M-3360 1472l-409 -34 ..."/>
<path id="reg13" fill="white" d="M-3310 1481l27 -321 ..."/>
<path id="reg48" fill="white" d="M-3838 1l384 62 389 ..."/>
<path id="reg27" fill="white" d="M-2327 1137l-73 -76 ..."/>
<path id="reg51" fill="white" d="M-1319 1100l-1000 ..."/>
<path id="reg35" fill="white" d="M-283 965l-59 -624 ..."/>
<path id="reg42" fill="white" d="M-1319 921l1036 44 ..."/>
<path id="reg28" fill="white" d="M-1346 1881l13 -372 ..."/>
<path id="reg17" fill="white" d="M35 2094l17 11 15 0 ..."/>
<path id="reg06" fill="white" d="M-1346 1881l283 6 3 ..."/>
<path id="reg37" fill="white" d="M-1275 2753l-2 -74 ..."/>
<path id="reg24" fill="white" d="M-342 341l59 624 0 ..."/>
<path id="reg50" fill="white" d="M677 1564l-110 -200 ..."/>
<path id="reg16" fill="white" d="M567 1364l110 200 ..."/>
<path id="reg23" fill="white" d="M669 713l27 25 29 ..."/>
<path id="reg14" fill="white" d="M1244 1669l73 560 ..."/>
<path id="reg15" fill="white" d="M1290 1619l375 -39 ..."/>
<path id="reg36" fill="white" d="M2156 2257l-14 0 0 ..."/>

<!—SVG renderer will try to render here -->
<path id="reg39" fill="white" d="M2744 1899l-190 39 ..."/>
<path id="reg33" fill="white" d="M3452 1451l-75 -36 ..."/>
<path id="reg20" fill="white" d="M3898 660l71 344 29 ..."/>
<path id="reg47" fill="white" d="M3350 2092l71 -12 -19 ..."/>
<path id="reg49" fill="white" d="M3021 1975l0 11 -17 ..."/>
<path id="reg30" fill="white" d="M3840 671l12 0 15 ..."/>
<path id="reg22" fill="white" d="M3625 1144l142 -23 ..."/>
<path id="reg31" fill="white" d="M3452 1451l-31 51 ..."/>
<path id="reg07" fill="white" d="M3625 1451l13 -13 ..."/>
<path id="reg46" fill="white" d="M3552 733l271 -34 ..."/>
<path id="reg40" fill="white" d="M3956 1250l-14 -3 ..."/>
<path id="reg21" fill="white" d="M3294 1787l41 229 ..."/>
<path id="reg01" fill="white" d="M-3017 4994l-17 -13 ..."/>
<path id="reg08" fill="white" d="M3350 1773l-15 36 0 ..."/>
<path id="reg12" fill="white" d="M-2152 4659l16 -9 -..."/>
<path id="reg09" fill="white" d="M3050 1978l-32 62 ..."/>

</g>
</svg>
<!—SVG renderer will definitely render here -->

OMA-WP-Rich_Media_Environment-20081014-C Page 67 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

At each rendering points, the SVG UA renders a non-well formed XML tree. At the first rendering point, the current tree is:

<?xml version="1.0" encoding="iso-8859-1"?>
<svg width="176" height="144" viewBox="-4593 -100 9197 5749">

<g fill="#B7DDC8" stroke="black" stroke-width="1">
<rect id="reg00" x="-4593" y="-100" width="9197"

height="5749" fill="#EEEEEE"/>
<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>
<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>
<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>
<path id="reg10" fill="white" d="M2758 3969l-12 0 0 -14 ..."/>
<path id="reg02" fill="white" d="M1892 3661l2 -25 -13 ..."/>
<path id="reg43" fill="white" d="M927 2945l0 -23 -14 ..."/>
<path id="reg18" fill="white" d="M1767 2154l-32 -39 0 ..."/>
<path id="reg25" fill="white" d="M925 2945l131 0 0 -9 ..."/>
<path id="reg19" fill="white" d="M323 4070l15 14 0 13 ..."/>
<path id="reg04" fill="white" d="M123 2716l762 -37 15 ..."/>
<path id="reg26" fill="white" d="M523 1924l73 35 14 7 ..."/>
<path id="reg44" fill="white" d="M252 3409l0 216 31 36 ..."/>
<path id="reg32" fill="white" d="M-1277 2679l2 74 0 885 ..."/>
<path id="reg03" fill="white" d="M-3079 2509l852 127 2 0 ..."/>
<path id="reg05" fill="white" d="M-4404 1383l27 -39 608 ..."/>
<path id="reg29" fill="white" d="M-3360 1472l50 9 404 ..."/>
<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>

Which violates the XML model.

LASeR would do this:

<?xml version="1.0" encoding="UTF-8"?>
<saf:SAFSession xmlns:saf="urn:mpeg:mpeg4:SAF:2005"

xmlns:lsr="urn:mpeg:mpeg4:LASeR:2005" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">
<saf:sceneHeader>

<lsr:LASeRHeader .../>
</saf:sceneHeader>
<saf:sceneUnit>

<lsr:NewScene>
<svg width="176" height="144"

viewBox="-4593 -100 9197 5749">
<g id="root" fill="#B7DDC8" stroke="black" stroke-width="1">

<rect id="reg00" x="-4593" y="-100" width="9197"
height="5749" fill="#EEEEEE"/>

<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>
<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>
<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>
<path id="reg10" fill="white" d="M2758 3969l-12 0 0 -14 ..."/>
<path id="reg02" fill="white" d="M1892 3661l2 -25 -13 ..."/>
<path id="reg43" fill="white" d="M927 2945l0 -23 -14 ..."/>
<path id="reg18" fill="white" d="M1767 2154l-32 -39 0 ..."/>
<path id="reg25" fill="white" d="M925 2945l131 0 0 -9 ..."/>
<path id="reg19" fill="white" d="M323 4070l15 14 0 13 ..."/>
<path id="reg04" fill="white" d="M123 2716l762 -37 15 ..."/>
<path id="reg26" fill="white" d="M523 1924l73 35 14 7 ..."/>
<path id="reg44" fill="white" d="M252 3409l0 216 31 36 ..."/>
<path id="reg32" fill="white" d="M-1277 2679l2 74 0 885 ..."/>
<path id="reg03" fill="white" d="M-3079 2509l852 127 2 0 ..."/>
<path id="reg05" fill="white" d="M-4404 1383l27 -39 608 ..."/>
<path id="reg29" fill="white" d="M-3360 1472l50 9 404 ..."/>
<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>

</g>
</svg>

</lsr:NewScene>
</saf:sceneUnit>

<!-- other packets here -->

<saf:endOfSAFSession/>

</saf:SAFSession>

OMA-WP-Rich_Media_Environment-20081014-C Page 68 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

The SVG content in the LASeR first packet is highlighted in blue. It is a complete and well-formed subtree. It obeys the
XML model.

The complete content in LASeR would be:

<?xml version="1.0" encoding="UTF-8"?>
<saf:SAFSession xmlns:saf="urn:mpeg:mpeg4:SAF:2005"

xmlns:lsr="urn:mpeg:mpeg4:LASeR:2005" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">
<saf:sceneHeader>

<lsr:LASeRHeader .../>
</saf:sceneHeader>
<saf:sceneUnit>

<lsr:NewScene>
<svg width="176" height="144"

viewBox="-4593 -100 9197 5749">
<g id="root" fill="#B7DDC8" stroke="black" stroke-width="1">

<rect id="reg00" x="-4593" y="-100" width="9197"
height="5749" fill="#EEEEEE"/>

<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>
<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>
<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>
<path id="reg10" fill="white" d="M2758 3969l-12 0 0 -14 ..."/>
<path id="reg02" fill="white" d="M1892 3661l2 -25 -13 ..."/>
<path id="reg43" fill="white" d="M927 2945l0 -23 -14 ..."/>
<path id="reg18" fill="white" d="M1767 2154l-32 -39 0 ..."/>
<path id="reg25" fill="white" d="M925 2945l131 0 0 -9 ..."/>
<path id="reg19" fill="white" d="M323 4070l15 14 0 13 ..."/>
<path id="reg04" fill="white" d="M123 2716l762 -37 15 ..."/>
<path id="reg26" fill="white" d="M523 1924l73 35 14 7 ..."/>
<path id="reg44" fill="white" d="M252 3409l0 216 31 36 ..."/>
<path id="reg32" fill="white" d="M-1277 2679l2 74 0 885 ..."/>
<path id="reg03" fill="white" d="M-3079 2509l852 127 2 0 ..."/>
<path id="reg05" fill="white" d="M-4404 1383l27 -39 608 ..."/>
<path id="reg29" fill="white" d="M-3360 1472l50 9 404 ..."/>
<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>

</g>
</svg>

</lsr:NewScene>
</saf:sceneUnit>

<saf:sceneUnit time="1000">
<lsr:Insert id=”root”>

<path id="reg38" fill="white" d="M-3360 1472l-409 -34 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg13" fill="white" d="M-3310 1481l27 -321 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg48" fill="white" d="M-3838 1l384 62 389 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg27" fill="white" d="M-2327 1137l-73 -76 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg51" fill="white" d="M-1319 1100l-1000 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg35" fill="white" d="M-283 965l-59 -624 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg42" fill="white" d="M-1319 921l1036 44 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg28" fill="white" d="M-1346 1881l13 -372 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

OMA-WP-Rich_Media_Environment-20081014-C Page 69 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

<path id="reg17" fill="white" d="M35 2094l17 11 15 0 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg06" fill="white" d="M-1346 1881l283 6 3 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg37" fill="white" d="M-1275 2753l-2 -74 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg24" fill="white" d="M-342 341l59 624 0 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg50" fill="white" d="M677 1564l-110 -200 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg16" fill="white" d="M567 1364l110 200 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg23" fill="white" d="M669 713l27 25 29 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg14" fill="white" d="M1244 1669l73 560 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg15" fill="white" d="M1290 1619l375 -39 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg36" fill="white" d="M2156 2257l-14 0 0 ..."/>
</lsr:Insert>

</saf:sceneUnit>

<saf:sceneUnit time="2000">
<lsr:Insert id=”root”>

<path id="reg39" fill="white" d="M2744 1899l-190 39 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg33" fill="white" d="M3452 1451l-75 -36 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg20" fill="white" d="M3898 660l71 344 29 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg47" fill="white" d="M3350 2092l71 -12 -19 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg49" fill="white" d="M3021 1975l0 11 -17 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg30" fill="white" d="M3840 671l12 0 15 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg22" fill="white" d="M3625 1144l142 -23 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg31" fill="white" d="M3452 1451l-31 51 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg07" fill="white" d="M3625 1451l13 -13 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg46" fill="white" d="M3552 733l271 -34 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg40" fill="white" d="M3956 1250l-14 -3 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg21" fill="white" d="M3294 1787l41 229 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg01" fill="white" d="M-3017 4994l-17 -13 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

OMA-WP-Rich_Media_Environment-20081014-C Page 70 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

<path id="reg08" fill="white" d="M3350 1773l-15 36 0 ..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg12" fill="white" d="M-2152 4659l16 -9 -..."/>
</lsr:Insert>
<lsr:Insert id=”root”>

<path id="reg09" fill="white" d="M3050 1978l-32 62 ..."/>
</lsr:Insert>

</saf:sceneUnit>

<saf:endOfSAFSession/>

</saf:SAFSession>

The scene tree in the SVG UA after the first LASeR packet has been received and decoded, is:

<svg id="root" width="176" height="144"
viewBox="-4593 -100 9197 5749">
<g fill="#B7DDC8" stroke="black" stroke-width="1">

<rect id="reg00" x="-4593" y="-100" width="9197"
height="5749" fill="#EEEEEE"/>

<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>
<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>
<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>
...
<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>

</g>
</svg>

The scene tree in the SVG UA after the second LASeR packet has been received and decoded, is:

<svg id="root" width="176" height="144"
viewBox="-4593 -100 9197 5749">
<g fill="#B7DDC8" stroke="black" stroke-width="1">

<rect id="reg00" x="-4593" y="-100" width="9197"
height="5749" fill="#EEEEEE"/>

<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>
<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>
<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>
...
<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>
<path id="reg38" fill="white" d="M-3360 1472l-409 -34 ..."/>
<path id="reg13" fill="white" d="M-3310 1481l27 -321 ..."/>
<path id="reg48" fill="white" d="M-3838 1l384 62 389 ..."/>
...
<path id="reg36" fill="white" d="M2156 2257l-14 0 0 ..."/>

</g>
</svg>

OMA-WP-Rich_Media_Environment-20081014-C Page 71 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

The scene tree in the SVG UA after the third LASeR packet has been received and decoded, is:

<svg id="root" width="176" height="144"
viewBox="-4593 -100 9197 5749">
<g fill="#B7DDC8" stroke="black" stroke-width="1">

<rect id="reg00" x="-4593" y="-100" width="9197"
height="5749" fill="#EEEEEE"/>

<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>
<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>
<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>
...
<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>
<path id="reg38" fill="white" d="M-3360 1472l-409 -34 ..."/>
<path id="reg13" fill="white" d="M-3310 1481l27 -321 ..."/>
<path id="reg48" fill="white" d="M-3838 1l384 62 389 ..."/>
...
<path id="reg36" fill="white" d="M2156 2257l-14 0 0 ..."/>
<path id="reg39" fill="white" d="M2744 1899l-190 39 ..."/>
<path id="reg33" fill="white" d="M3452 1451l-75 -36 ..."/>
<path id="reg20" fill="white" d="M3898 660l71 344 29 ..."/>
...
<path id="reg09" fill="white" d="M3050 1978l-32 62 ..."/>

</g>
</svg>

OMA-WP-Rich_Media_Environment-20081014-C Page 72 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Appendix C. Annex A: SVG EVENTS
This section contains the list the supported events as specified in the SVG Mobile 1.2 draft specification:
http://www.w3.org/TR/SVGMobile12/interact.html#SVGEvents.

Event Identifier

{event-namespace, event-
localname}

Description DOM3 event
category

Animation
event name

uDOM interface

{"http://www.w3.org/2001/xml-
events", "DOMFocusIn"}

SVG 1.2 alias:
{"http://www.w3.org/2001/xml-
events", "focusin"} (see Notes

below).

Occurs when an element
receives focus. UIEvent focusin UIEvent

{"http://www.w3.org/2001/xml-
events", "DOMFocusOut"}

SVG 1.2 alias:
{"http://www.w3.org/2001/xml-
events", "focusout"} (see Notes

below).

Occurs when an element
loses focus. UIEvent focusout UIEvent

{"http://www.w3.org/2001/xml-
events", "DOMActivate"}

SVG 1.2 alias:
{"http://www.w3.org/2001/xml-
events", "activate"} (see Notes

below).

Occurs when an element is
activated, for instance,
thru a mouse click or a

keypress

UIEvent activate UIEvent

{"http://www.w3.org/2001/xml-
events", "click"}

Occurs when the pointing
device button is clicked

over an element. A click is
defined as a mousedown

and mouseup over the
same screen location. The
sequence of these events

is: mousedown,
mouseup, click.

MouseEvent click MouseEvent

{"http://www.w3.org/2001/xml-
events", "mousedown"}

Occurs when the pointing
device button is pressed

over an element.
MouseEvent mousedown MouseEvent

{"http://www.w3.org/2001/xml-
events", "mouseup"}

Occurs when the pointing
device button is released

over an element.
MouseEvent mouseup MouseEvent

http://www.w3.org/TR/SVGMobile12/svgudom.html#events::MouseEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-MouseEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::MouseEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-MouseEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::MouseEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-MouseEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::UIEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-UIEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::UIEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-UIEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::UIEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-UIEvent
http://www.w3.org/TR/SVGMobile12/interact.html#SVGEvents

OMA-WP-Rich_Media_Environment-20081014-C Page 73 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

{"http://www.w3.org/2001/xml-
events", "mouseover"}

Occurs when the pointing
device is moved onto an

element.
MouseEvent mouseover MouseEvent

{"http://www.w3.org/2001/xml-
events", "mousemove"}

Occurs when the pointing
device is moved while it is

over an element.
MouseEvent mousemove MouseEvent

{"http://www.w3.org/2001/xml-
events", "mouseout"}

Occurs when the pointing
device is moved away

from an element.
MouseEvent mouseout MouseEvent

{"http://www.w3.org/2001/xml-
events", "textInput"}

One or more characters
have been entered. TextEvent none TextEvent

{"http://www.w3.org/2001/xml-
events", "keydown"}

A key is pressed down.
(The normative definition

of this event is the
description in the DOM3

Events specification.)

KeyboardEvent none KeyboardEven
t

{"http://www.w3.org/2001/xml-
events", "keyup"}

A key is released. (The
normative definition of

this event is the
description in the DOM3

Events specification.)

KeyboardEvent none KeyboardEven
t

{"http://www.w3.org/2001/xml-
events", "load"}

Deprecated backwards-
compatibility alias:

{"http://www.w3.org/2001/xml-
events", "SVGLoad"} (see Notes

below).

The event is triggered at
the point at which the user
agent has fully parsed the

element and its
descendants and is ready
to act appropriately upon

that element, such as
being ready to render the

element to the target
device. Referenced

external resources that are
required must be loaded,

parsed and ready to render
before the event is
triggered. Optional

external resources are not
required to be ready for

the event to be triggered.

HTMLEvent load Event

http://www.w3.org/TR/SVGMobile12/svgudom.html#events::Event
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-eventgroupings-htmlevents
http://www.w3.org/TR/SVG/struct.html#ExternalResourcesRequired
http://www.w3.org/TR/SVG/struct.html#ExternalResourcesRequired
http://www.w3.org/TR/SVG/struct.html#ExternalResourcesRequired
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::KeyboardEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::KeyboardEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-KeyboardEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-KeyboardEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-KeyboardEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::KeyboardEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::KeyboardEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-KeyboardEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-KeyboardEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-KeyboardEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::TextEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-TextEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::MouseEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-MouseEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::MouseEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-MouseEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::MouseEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-MouseEvent

OMA-WP-Rich_Media_Environment-20081014-C Page 74 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

{"http://www.w3.org/2001/xml-
events", "resize"}

Deprecated backwards-
compatibility alias:

{"http://www.w3.org/2001/xml-
events", "SVGResize"} (see

Notes below).

Occurs when a document
view is being resized. This
event is only applicable to

'svg' elements and is
dispatched after the resize
operation has taken place.
The target of the event is

the 'svg' element.

HTMLEvent resize Event

{"http://www.w3.org/2001/xml-
events", "scroll"}

Deprecated backwards-
compatibility alias:

{"http://www.w3.org/2001/xml-
events", "SVGScroll"} (see

Notes below).

Occurs when a document
view is being shifted along

the X or Y or both axis,
either through a direct user
interaction or any change

on the
'currentTranslate'
property available on

SVGSVGElement
interface. This event is
only applicable to 'svg'

elements and is dispatched
after the shift modification
has taken place. The target

of the event is the 'svg'
element.

HTMLEvent scroll Event

{"http://www.w3.org/2001/xml-
events", "zoom"}

Deprecated backwards-
compatibility alias:

{"http://www.w3.org/2001/xml-
events", "SVGZoom"} (see

Notes below).

Occurs when the zoom
level of a document view
is being changed, either

through a direct user
interaction or any change

to the 'currentScale'
property available on

SVGSVGElement
interface. This event is
only applicable to 'svg'

elements and is dispatched
after the zoom level

modification has taken
place. The target of the

event is the 'svg' element.

DOM3's SVG
Events zoom Event

{"http://www.w3.org/2001/xml-
events", "beginEvent"}

Occurs when an animation
element begins. For

details, see the description
of the Events and event

model in SMIL 2.0.

DOM3's Timing
Events beginEvent TimeEvent

http://www.w3.org/TR/SVGMobile12/svgudom.html#events::TimeEvent
http://www.w3.org/TR/2005/REC-SMIL2-20050107/
http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-timing.html#Timing-DOMEvents
http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-timing.html#Timing-DOMEvents
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::Event
http://www.w3.org/TR/SVGMobile12/struct.html#SVGElement
http://www.w3.org/TR/SVGMobile12/struct.html#SVGElement
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::Event
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-eventgroupings-htmlevents
http://www.w3.org/TR/SVGMobile12/struct.html#SVGElement
http://www.w3.org/TR/SVGMobile12/struct.html#SVGElement
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::Event
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-eventgroupings-htmlevents
http://www.w3.org/TR/SVGMobile12/struct.html#SVGElement
http://www.w3.org/TR/SVGMobile12/struct.html#SVGElement

OMA-WP-Rich_Media_Environment-20081014-C Page 75 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

{"http://www.w3.org/2001/xml-
events", "endEvent"}.

Occurs when an animation
element ends. For details,
see the description of the

Events and event model in
SMIL 2.0.

DOM3's Timing
Events endEvent TimeEvent

{"http://www.w3.org/2001/xml-
events", "repeatEvent"}

Occurs when an animation
element repeats. It is
raised each time the

element repeats, after the
first iteration. For details,
see the description of the

Events and event model in
SMIL 2.0.

DOM3's Timing
Events repeat TimeEvent

{"http://www.w3.org/2001/xml-
events", "wheel"}

Occurs when a rotational
input device has been

activated.
UIEvent none WheelEvent

{"http://www.w3.org/2000/svg",
"preload"}

A load operation has
begun. none none ProgressEven

t

{"http://www.w3.org/2000/svg",
"loadProgress"}

Progress has occurred in
loading a given resource. none none ProgressEven

t

{"http://www.w3.org/2000/svg",
"postload"}

A load operation has
completed. none none ProgressEven

t

{"http://www.w3.org/2001/xml-
events", "timer"}

Occurs when the specified
timer interval has elapsed
for a timer. This event is

triggered only by 'enabled'
timers in the current

global execution context
of the SVG document (i.e.

for timers which have
been instantiated via the
SVGGlobal interface and

started via the start()
method of the SVGTimer

interface).

none none Event

{"http://www.w3.org/2000/svg",
"connectionConnected"}

Occurs when a connection
has been established. No

context information is
available.

none none ConnectionEv
ent

{"http://www.w3.org/2000/svg",
"connectionClosed"}

Occurs when a connection
has been closed. No

context information is
available

none none ConnectionEv
ent

http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ConnectionEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ConnectionEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ConnectionEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ConnectionEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::Event
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ProgressEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ProgressEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ProgressEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ProgressEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ProgressEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ProgressEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::WheelEvent
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-UIEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::TimeEvent
http://www.w3.org/TR/2005/REC-SMIL2-20050107/
http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-timing.html#Timing-DOMEvents
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::TimeEvent
http://www.w3.org/TR/2005/REC-SMIL2-20050107/
http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-timing.html#Timing-DOMEvents

OMA-WP-Rich_Media_Environment-20081014-C Page 76 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

{"http://www.w3.org/2000/svg",
"connectionError"}

Occurs when an error
happens during the

lifetime of a connection.
Additional context

information is available in
the errorCode field.

none none ConnectionEv
ent

{"http://www.w3.org/2000/svg",
"connectionDataSent"}

Occurs when data has
been successfully

transmitted. No context
information is available.

none none ConnectionEv
ent

{"http://www.w3.org/2000/svg",
"connectionDataReceived"}

Occurs when data has
been received on the

connection. Additional
context information is

available on the
receivedData field.

none none ConnectionEv
ent

http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ConnectionEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ConnectionEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ConnectionEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ConnectionEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ConnectionEvent
http://www.w3.org/TR/SVGMobile12/svgudom.html#events::ConnectionEvent

OMA-WP-Rich_Media_Environment-20081014-C Page 77 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Appendix D. Annex B: APPLICATION LEVEL SYNCHRONIZATION
The follow section describes the application level synchronization as specified by the run-time synchronization.
http://www.w3.org/TR/SVGMobile12/multimedia.html#Smil2Sync .

(a) syncBehavior = (canSlip | locked | independent | default)

Defines the runtime synchronization behavior for an element.

Legal values are:

canSlip: Allows the associated element to slip with respect to the parent time container. When this value is used,
any syncTolerance attribute is ignored.

Locked: Forces the associated element to maintain sync with respect to the parent time container. This can be
eased with the use of the syncTolerance attribute.

Independent: Declares an independent timeline that is scheduled with the timegraph, but will ignore any seek
operations on the parent.

Default: The runtime synchronization behavior for the element is determined by the value of the
syncBehaviorDefault attribute. This is the default value.

The argument value independent is equivalent to setting syncBehavior="canSlip" and syncMaster="true" so
that the element is scheduled within the timegraph, but is unaffected by any other runtime synchronization issues.
Setting syncBehavior="canSlip" and syncMaster="true" declares the element as being the synchronization
master clock and that the element may slip against its parent time line

(b) syncTolerance = (Clock-value | default)

This attribute on timed elements and time containers defines the synchronization tolerance for the associated
element. The attribute has an effect only if the element's runtime synchronization behavior is "locked". This allows
a locked sync relationship to ignore a given amount of slew without forcing resynchronization.

Clock-value: Specifies the synchronization tolerance as a value. Clock values are measured in element simple
time.

Default: The synchronization tolerance for the element is determined by the value of the syncToleranceDefault
attribute. This is the default value.

(c) syncMaster

Boolean attribute on media elements and time containers that forces other elements in the time container to
synchronize their playback to this element. The default value is false. The associated property is read-only, and
cannot be set by script.

Controlling the default behavior

Two attributes are defined to specify the default behavior for runtime synchronization:

(d) syncBehaviorDefault = (canSlip | locked | independent | inherit)

Defines the default value for the runtime synchronization behavior for an element. The values "canSlip", "locked"
and "independent" specify that the element's runtime synchronization behavior is the respective value.

http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-timing.html#adef-syncToleranceDefault
http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-timing.html#adef-syncMaster
http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-timing.html#adef-syncBehavior
http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-timing.html#adef-syncMaster
http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-timing.html#adef-syncBehavior
http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-timing.html#adef-syncBehaviorDefault
http://www.w3.org/TR/SVGMobile12/multimedia.html#Smil2Sync

OMA-WP-Rich_Media_Environment-20081014-C Page 78 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Inherit: Specifies that the value of this attribute (and the value of the element's runtime synchronization behavior)
are inherited from the syncBehaviorDefault value of the parent element. If there is no parent element, the value is
implementation dependent. This is the default value.

(e) syncToleranceDefault = (Clock-value | inherit)

Defines the default value for the runtime synchronization tolerance value for an element.
Clock values specify that the element's runtime synchronization tolerance value is the respective value.

Inherit: Specifies that the value of this attribute (and the value of the element's runtime synchronization tolerance
value) are inherited from the syncToleranceDefault value of the parent element. If there is no parent element, the
value is implementation dependent but should be no greater than two seconds.
This is the default value.

The accumulated synchronization offset

If an element slips synchronization relative to its parent, the amount of this slip at any point is described as the
accumulated synchronization offset. This offset is used to account for pause semantics as well as performance or
delivery related slip. This value is used to adjust the conversion between element and parent times, as described
in Converting between local and global times. The offset is computed as follows:

Let tc(tps) be the computed element active time for an element at the parent simple time tps, according to the
defined synchronization relationship for the element.

Let to(tps) be the observed element active time for an element at the parent simple time tps.

The accumulated synchronization offset O is:

O = to(tps) - tc(tps)

This offset is measured in parent simple time.

Thus an accumulated synchronization offset of 1 second corresponds to the element playing 1 second "later" than
it was scheduled. An offset of -0.5 seconds corresponds to the element playing a half second "ahead" of where it
should be.

http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-timing.html#Timing-ConvertingLocalGlobalTimes
http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-timing.html#adef-syncToleranceDefault
http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-timing.html#adef-syncBehaviorDefault

OMA-WP-Rich_Media_Environment-20081014-C Page 79 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

Appendix E. Annex C: TRANSPORT LEVEL SYNCHRONIZATION

As explained in the transport section, rich media streaming is realized by (a) streaming continuous media like
SVG, video and audio using RTP (b) downloading the discrete media like images over FLUTE.

In both RTP-RTP and RTP-FLUTE synchronization scenarios, one media is played in-sync with the other media.
In the case of an RTP-FLUTE combination, the discrete media is generally played in-sync with one of the
continuous media, whereas in the RTP-RTP case, both are continuous media and the reference media depends
largely on the application.

The RTP-FLUTE case is more straightforward as the discrete media chunks tend to have longer playout times
than the continuous media chunks (e.g. 20 ms audio frames or 100 ms video frames). The FLUTE packets are
transmitted in advance so that the receiver can make sure it has the entire discrete media chunk reconstructed
from the FLUTE packets (some of which might be lost or arrive out of order). Also information is needed to inform
the receiver which discrete media chunk has to be rendered in sync with a particular segment of the continuous
media. In SVG data, the lifecycle of the discrete media can be defined to aid in this synchronization and also,
scripts can be sent in advance to the receiver to provide more synchronization information if needed.

In the RTP-RTP case, the server enables synchronization of media streams at the receiver by running a common
presentation based reference clock and periodically announcing through RTCP, the relationship between the
reference clock time and the media stream time. As the reference clock runs at a constant rate, correspondence
points between the reference clock and the media stream allow the receiver to calculate the relative timing
relationship between the media streams.

The correspondence between the reference clock and the media clock is noted when each RTCP packet is
generated. An offset is then calculated between the individual media times and reference clock. The common
reference clock is the “wall clock” time used by RTCP. It takes the form of an NTP-format timestamp, counting
seconds and fractions of a second since midnight UTC (coordinated Universal Time) on January 1, 1900. The
server periodically establishes a correspondence between the media clock for each stream and the common
reference clock; communicated to receivers via RTCP sender report packets.

Synchronized clocks are required only when media streams generated by different hosts are being synchronized.
Also, it is necessary to identify specific media streams/sources that need to be synchronized. RTP provides this
information through synchronization source identifiers (SSRC), giving the related sources a shared name to
distinguish streams to be synchronized from the independent ones. A mapping from SSRC identifiers to a
persistent canonical name (CNAME) is provided by the RTCP source description (SDES) packets. A sender
should ensure that RTP sessions to be synchronized on playout have a common CNAME so that receivers know
how to align media. The CNAME is determined algorithmically according to the user name and network address
of the source host. In the case of multiple hosts, the RTP standard requires each host to use its own IP address
as part of the CNAME.

The receiver (rich media client) synchronizes those streams that the sender has given the same CNAME in their
RTCP source description packets. The actual synchronization process is triggered by the reception of RTCP
sender report packets containing the mapping between the media clock and a reference clock common to all the
media. Once this mapping has been determined for the media streams, the receiver has the information needed
to synchronize playout.

The first step of synchronization is to determine, for each stream to be synchronized, when the media data
corresponding to a particular reference time is to be presented to the user. Due to several reasons including
network latency, two streams transmitted at the same time may not be scheduled for presentation at the same
time if the playout times are determined independently. Thus, the playout time for one stream has to be adjusted
to match the other. This adjustment translates into an offset to be added to the playout buffering delay for one
stream, such that the media are played out in time alignment.

OMA-WP-Rich_Media_Environment-20081014-C Page 80 (80)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20080101-I]

The receiver observes the mapping between the media clock and the reference clock as assigned by the sender,
for each media stream it is to synchronize. This mapping is conveyed to the receiver in periodic RTCP sender
report packets, and because the nominal rate of the media clock is known from the payload format, the receiver
can calculate the reference clock capture time for any data packet once it has received an RTCP sender report
from that source. When an RTP data packet with media timestamp M is received, the corresponding reference
clock capture time at the server, Ts (the RTP timestamp mapped to the reference timeline), can be calculated as
follows:

 Ts = (Tssr + (M - Msr)) / R

where, Msr is the media (RTP) timestamp in the last RTCP sender report packet, Tssr is the corresponding
reference clock (NTP) timestamp and R is the nominal media timestamp clock rate in hertz.

Similarly, the receiver also calculates the playout time for any particular packet, TR according to its local reference
clock. This is equal to the RTP timestamp of the packet, mapped to the receiver’s reference clock timeline plus
the playout buffering delay.

Once the capture and playout times are known according to the common reference timeline, the receiver can
estimate the relative delay between media capture and playout for each stream. If data sampled at time Ts
according to the sender’s reference clock is presented at time TR according to the receiver’s reference clock, the
delay between them for that given media is Dmedia = Ts - TR.

Once the relative capture-to-playout delay has been estimated for different media streams, a synchronization
delay between streams is computed. For example, Dsync = DSVG - Dvideo. If the synchronization delay is zero, then
the media streams are synchronized. A non-zero value indicates that on media is played out ahead of the other.
For the media stream that is ahead, the synchronization delay (in seconds) is multiplied by the nominal media
clock rate, R to convert into media timestamp units, and is then applied as a constant offset to the playout
calculation for that media stream, delaying playout to match the other stream.

The choice of media for playout adjustment depends on the application, limit of human perception of error, and
the priority of the media. Typically audio is more sensitive to playout adjustment when compared to other media
such as SVG and video. In this case, it may be appropriate to delay SVG animations or video to match the audio
presentation time.

	1 Scope
	2 References
	3 Terminology and Conventions
	3.1 Conventions
	3.2 Definitions
	3.3 Abbreviations

	4 Introduction
	5 Potential Technologies for RME
	5.1 MPEG4 part 20 (LASeR)
	5.2 The Mobile Open Rich-media Environment (MORE)
	5.2.1 Scene Presentation Format
	5.2.2 Scene Update Format
	5.2.3 Local User Interaction
	5.2.4 Container/Delivery Format
	5.2.5 Re-synchronization and Tune-in
	5.2.6 Transport
	5.2.7 Compression

	6 Comparision of the technologies against the requirements
	7 Evaluation of the technologies against the requirements
	7.1 MPEG4 part 20 (LASeR)
	7.1.1 Alignment of LASeR with SVG Tiny 1.1 and 1.2
	7.1.1.1 LASeR scene extensions
	7.1.1.2 Font

	7.1.2 RME Dynamic updates requirements
	7.1.2.1 Using the LASeR command
	7.1.2.1.1 General commands
	7.1.2.1.2 Commands specified for streaming and broadcast
	7.1.2.1.3 Commands defined in LASeR for additional requirements
	7.1.2.1.4 Extensibility and genericity
	7.1.2.1.5 Timing model
	7.1.2.1.6 Compatibility Issues

	7.1.2.2 Updates through Scripting

	7.1.3 Combination of updates
	7.1.4 Streaming and reliability requirements
	7.1.4.1 Progressive download and rendering
	7.1.4.1.1 In SVGT 1.2
	7.1.4.1.2 In LASeR

	7.1.4.2 Streaming
	7.1.4.2.1 In SVGT1.2
	7.1.4.2.2 In LASeR

	7.1.4.3 Reliability

	7.1.5 Caching and private data management
	7.1.6 Synchronization
	7.1.7 Efficiency
	7.1.7.1 Binary Format
	7.1.7.2 Server side efficiency: the append mode

	7.1.8 Packaging
	7.1.8.1 SAF Elements
	7.1.8.1.1 SAF Benefits
	7.1.8.1.2 Caching and private data management
	7.1.8.1.3 Synchronization

	7.1.9 Integration
	7.1.9.1 LASeR client
	7.1.9.2 Integration with the SVGT client
	7.1.9.3 Integration with the Browser
	7.1.9.3.1 Processing Model

	7.1.9.4 Integration in the OMA environment
	7.1.9.4.1 OMA DRM
	7.1.9.4.2 BCAST
	7.1.9.4.3 Others OMA enabler (DCD…)

	7.1.9.5 Integration in the 3GPP environment
	7.1.9.5.1 LASeR in 3GPP delivery
	7.1.9.5.2 LASeR in 3GPP Extended File Format
	7.1.9.5.3 SAF and the 3GPP extended file format

	7.1.9.6 Integration in 3GPP 2 environment.

	7.2 The Mobile Open Rich-media Environment (MORE)
	7.2.1 Overview
	7.2.2 Scene and Scene Updates
	7.2.2.1 Scene
	7.2.2.2 Scene Updates
	7.2.2.2.1 Scene Update syntax

	7.2.2.3 Temporal Management of Scenes and Scene Updates

	7.2.3 SVG and Associated Media
	7.2.3.1 Media Types
	7.2.3.2 Referencing Media

	7.2.4 MORE Client Architecture
	7.2.4.1 Synchronization Module
	7.2.4.2 Resynchronization and Tune-In
	7.2.4.3 Remote Interaction
	7.2.4.3.1 Locally and Remotely Processed Events
	7.2.4.3.2 Generic Feedback Format

	7.2.4.4 Events and Event Management
	7.2.4.5 Browser Interaction

	7.2.5 Container Format
	7.2.6 Transport Mechanisms
	7.2.6.1 Overview

	7.2.7 Compression
	7.2.8 Conclusion

	7.3 Summary
	The accumulated synchronization offset

