Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.
Contents

1. SCOPE (INFORMATIVE) ... 4

2. REFERENCES ... 5
 2.1 NORMATIVE REFERENCES ... 5
 2.2 INFORMATIVE REFERENCES .. 5

3. TERMINOLOGY AND CONVENTIONS 6
 3.1 CONVENTIONS ... 6
 3.2 DEFINITIONS ... 6
 3.3 ABBREVIATIONS .. 6

4. INTRODUCTION (INFORMATIVE) ... 7
 4.1 SECURITY CONSIDERATIONS 7

5. ARCHITECTURAL MODEL .. 8
 5.1 DEPENDENCIES ... 8
 5.2 ARCHITECTURAL DIAGRAM 9
 5.3 FUNCTIONAL COMPONENTS AND INTERFACES 10
 5.3.1 Functional Elements ... 10
 5.3.2 Interfaces .. 10

6. SEC_CF DEPLOYMENT OPTIONS (INFORMATIVE) 12
 6.1.1 SEC_CF Direct OSG Access 12
 6.1.2 SEC_CF Proxy OSG Access 13
 6.2 ENABLER PROTOCOL REQUIREMENTS 13
 6.3 FLOWS .. 13
 6.3.1 Establishing a secure communication channel using SEC_CF .. 13
 6.4 RELATED SPECIFICATIONS 14

APPENDIX A. CHANGE HISTORY (INFORMATIVE) 15
 A.1 APPROVED VERSION HISTORY 15

Figures

Figure 1: Overview of the SEC_CF Architecture ... 9
Figure 2: Basic call flow .. 11
Figure 3: SEC_CF Home Domain Deployment .. 12
Figure 4: GBA deployment for SEC_CF roaming domain architecture 13
Figure 5: SECA initiated call flow .. 14
1. Scope

Common Security Functions Architecture provides common security architecture for OMA Enablers. SEC_CF also describes a common way to implement security functionality for OMA Enablers and provides various architectures for different enabler deployment scenarios. Ultimately, it should be possible for all types of OMA enablers to use this architecture to provide security.

SEC_CF will be accompanied with several Technical Specifications (TS). This specification (Architecture Document) intends to describe the high level architecture of the SEC_CF and provide architecture guidance for different enabler deployment options. Details of the security implementations will be provided in separate technical specifications. The list of the technical specifications can be found in this document.
2. References

2.1 Normative References

[OMA-TS-GBA] "OMA GBA profile", Version 1.0, Open Mobile Alliance™, OMA-TS-GBA_Profile-V1_0, URL: http://www.openmobilealliance.org/

2.2 Informative References

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [Error! Reference source not found.].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

- Communication channel: A communication channel is the means by which two entities can exchange messages.
- SEC_CF Domain: A set of entities for which a common party is responsible for the security functionality.

3.3 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMA</td>
<td>Open Mobile Alliance</td>
</tr>
<tr>
<td>SEC_CF</td>
<td>Security Common Functions</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
</tbody>
</table>
4. Introduction (Informative)

Security Common Functions Architecture aims to provide a common set of security mechanisms with their possible deployment options that can be re-used by OMA Enablers. The rationale behind this specification is to avoid, where possible, duplication of security effort for each OMA Enabler that requires security functionality. SEC_CF offers to re-use both the architectural entities (e.g. Security Gateways, etc) and security specifications (e.g. protocol profiles) when developing new OMA enablers.

This version of the SEC_CF aims to provide security functionality for OMA Enablers that are based on a Client-Server operational model and operate over TCP [TCP] as the transport protocol. A Client-Server operational model in the SEC_CF context requires a Security Agent (e.g. implemented in the Mobile Terminal) requesting services from an application server. Security Agents are generally implemented on a mobile terminal and an application server is likely to be the part of an OMA Enabler such as location servers, charging elements, etc. that resides in a fixed network.

SEC_CF defines functional entities such as security gateways and key management centres that can be integrated into the functional entities (e.g. mobile terminal, application server, etc) of the OMA Enabler architecture in order to provide security services. SEC_CF also permits various deployment models to reflect the current established deployment models (Home domain only, visited domain, etc) of service providers. SEC_CF defines several interfaces between its functional entities that can be implemented using industry standard security protocols. In some cases SEC_CF functional entities might be integrated into the enablers own functional entities to avoid creating new interfaces and simplify the solution.

A successful use of the SEC_CF by other OMA enablers requires an analysis of the security requirements to map the most appropriate SEC_CF options. In most cases SEC_CF cannot be used as a security add-on after the completion of the enabler specification. The development process of the enabler should consider SEC_CF integration as early as possible to avoid any possible architectural inconsistencies.

In this context domain refers to SEC_CF domain, as defined in 3.2.

4.1 Security Considerations

This enabler defines several security features such as authentication, confidentiality protection and integrity protection to be re-used by other OMA enablers. Security considerations for each security function are detailed in the relevant SEC_CF technical specifications.
5. Architectural Model

SEC_CF consists of architectural elements and interfaces between these elements. Detailed specifications of the architecture can be found in sections 5.3 of this document. This section only provides a general overview. Figure 1 illustrates the architectural elements and related interfaces defined for SEC_CF.

Current version of SEC_CF defines the following architectural elements to operate:

- **Security Agent (SECA):** This element is the entity through which an application or a user interacts with a requesting resource. In the case of a user this may be done through a user interface (UI). A Security Agent may be implemented in a Mobile Terminal which may include a removable security token such as a (U)SIM/R-UIM. However, SEC_CF also supports Security Agents that are implemented in application servers without a removable security token. Generally in the SEC_CF the SECA acts on behalf of the user and all identifiers in the SECA are bound to the user (subscriber) identities. Device identifiers for Mobile Terminals are not used within the security context of this version of the SEC_CF.

- **OMA Security Gateway (OSG):** This element provides security services such as authentication, encryption and integrity protection for any requesting resource that makes use of the SEC_CF. OSG can be integrated into the resource utilising SEC_CF or it can deployed as a separate entity that can provide services to a number of resources that can be reached via an OSG.

The following interfaces are defined between the architectural elements in the SEC_CF:

- **SEC-1:** This interface connects a SECA to an OSG. Currently SEC_CF only supports TCP as the transport protocol for SEC-1. If a requesting resource selects an application specific protocol to be implemented over TCP in a Client-Server model, then that protocol can be secured using the security mechanisms implemented by SEC-1. Security services for this interface are implemented at the transport and application layers. Security functionality of this interface is defined in section 5.3.2.1 of this document.

- **SEC-2:** This interface securely connects an OSG to another OSG. This interface can be used for distributed enabler deployments where the SECA connects to a requesting resource in a visited domain via the home OSG. Security functionality of this interface is defined in section 5.3.2.2 of this document.

- **SEC-3:** This is an I0 interface that connects an OSG to a requesting resource in cases where the OSG is not fully integrated into the requesting resource. Its definition is out of the scope of the work item as each requesting resource can implement SEC-3 based on the enabler specific protocols. The specific protocol realizations for this interface are out of scope.

5.1 Dependencies

SEC_CF architecture relies on several IETF specifications. The lists of dependencies are as follows:

- IETF TLS (Transport Layer Security) [RFC4346]
- IETF PSK-TLS (Pre-Shared Key Ciphersuites for Transport Layer Security) [RFC4279]
- IETF HTTP Digest Authentication [RFC2617]
- IETF IPSec (Internet Security Architecture) [RFC4301]
5.2 Architectural Diagram

Figure 1: Overview of the SEC_CF Architecture
5.3 Functional Components and Interfaces

Details of the architectural elements and interfaces of SEC_CF can be found in this section.

5.3.1 Functional Elements

5.3.1.1 Security Agent (SECA)

Security Agents is an entity that implements the SEC_CF security functionality. It interfaces with the OSG.

Security Agent provides the following functionality:

- Interfaces with the removable security tokens such as (U)SIM in 3GPP deployments. It MAY interface with R-UIM in 3GPP2 deployments.
- Provides unique identities.
- Uses the necessary key material to perform security services.
- Handles security credentials such as key materials to be used for SEC_CF operations.
- Performs the following security services: Authentication, Confidentiality and Integrity Protection. And MAY provide Denial of Service (DoS) protection.
- It can communicate either with Home or visited OSG.

5.3.1.2 OMA Security Gateway (OSG)

OMA Security Gateway provides the following functionality:

- Provides all the security services defined in the SEC_CF (Authentication, Authorization, Confidentiality and Integrity Protection, Replay Protection) to resources that are connected to it. It MAY provide DoS protection.

5.3.2 Interfaces

5.3.2.1 SEC-1

This interface MUST at least support TLS for transport layer security to provide authentication of the OSG to the SECA. If HTTP is used, HTTP Digest MUST also be used to provide authentication of the SECA to the OSG. If HTTP is not used as transport protocol for this interface, then PSK-TLS and/or client certificates MUST be supported in order to provide mutual authentication between the OSG and SECA in the transport layer.

5.3.2.2 SEC-2

This interface MUST at least support TLS [RFC 4346] and SHOULD also support IPSec [RFC4301] in tunnel mode with confidentiality [RFC 2406] and integrity protection [RFC2406].

5.3.2.3 SEC-3

This interface is not defined by SEC_CF.

Note: OSG initiated secure triggers use cases are FFS.

5.3.2.4 Basic flow

The basic SECA initiated flow is indicated in Error! Reference source not found.. The first step is that that SECA initiates a setup of a TLS tunnel between itself and the OSG. For mutual authentication we have three cases: 1) A shared key is used together with PSK-TLS. 2) The server is authenticated via a server certificate and the SECA via HTTP Digest and 3) The server and the client both use ceretificates for authentication.
Figure 2: Basic call flow
6. SEC_CF Deployment Options (Informative)

This version of SEC_CF allows SECAs to securely access resources in the visited domains either via the Home OSGs or directly via the visited OSG. The particular deployment of SEC_CF may depend on the specific operational requirements of the OMA Enabler as well as the underlying the IP transport model.

For the following deployment scenarios some additional elements and interfaces are introduced (in addition to the architectural elements and interfaces defined in chapter 5):

Key Management Centre (KMC)

Key Management Centre provides the following functionality:

- Provides the key management support to the OSG (Home and Visited).
- Provides key management to the SECA

KMC can also be integrated into the OSG.

Note: in the case where KMC is not integrated into the OSG, the KMC could be based on the BSF as defined in [GBA][GBA2].

KMC-IF

This interface connects an OSG to a KMC. The interface is not defined by SEC_CF.

Note: For 3GPP based implementations this interface corresponds to the Zn interface defined in Generic Bootstapping Architecture [GBA] defined in 3GPP specifications.

6.1.1 SEC_CF Direct OSG Access

![Figure 3: SEC_CF Home Domain Deployment](image)

In the cases where GBA is used for key management SECA will also have additional interfaces to the KMC (BSF in GBA). This interface is defined in 3GPP specifications and it is outside the scope of SEC_CF.

When the SEC-I interface is GBA-based, a Ua security protocol identifier is needed. For more information see the corresponding section in [OMA-TS-GBA].
6.1.2 SEC_CF Proxy OSG Access

For SEC_CF deployment based on GBA, only “Proxy Mode” is feasible. The home OSG will act as a proxy for the OMA enabler in the visited domain. Home OSG MUST provide a secure connection over the SEC-2 between the home and the visited OSG.

![Figure 4: GBA deployment for SEC_CF roaming domain architecture](image)

6.2 Enabler Protocol Requirements

Following requirements are defined for any OMA Enabler deployments that implement this version of the SEC_CF to secure its operations.

- The Enabler protocol MUST be based on the TCP protocol
- The Enabler protocol MUST operate in a Client-Server model.

6.3 Flows

6.3.1 Establishing a secure communication channel using SEC_CF

6.3.1.1 SECA initiated SEC_CF usage

The basic SECA initiated flow is indicated in Error! Reference source not found.. The first step is that SECA initiates a setup of a TLS tunnel between itself and the OSG. For mutual authentication we have three cases: 1) A shared key is used together with PSK-TLS. 2) The server is authenticated via a server certificate and the SECA via HTTP Digest and 3) The server and the client both use certificates for authentication. In cases 1) and 2) The OSG requests the credentials to be used from the KMC in Message 1 and receives them in Message 2.
6.4 Related Specifications

Further Details of SEC_CF are defined in the following specifications.

- SEC_CF TS OMA TLS Profile [OMA-TS-TLS]
- SEC_CF TS OMA GBA Profile [OMA-TS-GBA]
- SEC_CF DDS OMA SEC-CERTManagement Objects (MO) [OMA-SEC-CERT-MO]
Appendix A. Change History

A.1 Approved Version History

<table>
<thead>
<tr>
<th>Reference</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved Versions:</td>
<td>02 Sep 2008</td>
<td>Status changed to Approved by TP</td>
</tr>
<tr>
<td>OMA-AD-SEC_CF-V1_0</td>
<td></td>
<td>OMA-TP-2008-0321-INP_SEC_CF_V1_0_ERP_for_Final_Approval</td>
</tr>
</tbody>
</table>