

SyncML HTTP Binding, version 1.1.2
Approved Version 12-June-2003

Open Mobile Alliance
OMA-SyncML-HTTPBinding-V1_1_2-20030612-A

Continues the Technical Activities
Originated in the SyncML Initiative

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 2 (21)

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this
document may be used, at your sole risk, for any purposes. You may not use this document in any other manner
without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy
this document, provided that you retain all copyright and other proprietary notices contained in the original materials on
any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute
an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or
omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a
timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published
specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is
publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR
Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an
independent IPR review of this document and the information contained herein, and makes no representations or
warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This
document may contain inventions for which you must obtain licenses from third parties before making, using or selling
the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY
OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED
TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR
WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR
IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE
DOCUMENTS.

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

http://www.openmobilealliance.org/UseAgreement.html
http://www.openmobilealliance.org/ipr.html

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 3 (21)

Contents
1. SCOPE ...4
2. REFERENCES..5

2.1 NORMATIVE REFERENCES ...5
2.2 INFORMATIVE REFERENCES ..5

3. TERMINOLOGY AND CONVENTIONS ...6
3.1 CONVENTIONS ..6
3.2 DEFINITIONS...6
3.3 ABBREVIATIONS ...7

4. INTRODUCTION...8
5. HTTP BINDINGS...9

5.1 TCP TRANSPORT SERVICE ..9
5.1.1 Connection ..9
5.1.2 Connection Options...9
5.1.3 Disconnection..9
5.1.4 Abort ...9
5.1.5 Timeouts..9

5.2 EXCHANGING SYNCML MESSAGES ..10
5.2.1 Single Message Per Package ...10
5.2.2 Multiple Messages Per Package ..10

5.3 TRANSPORT COMMANDS..11
5.3.1 Methods...11
5.3.2 General Headers ..11
5.3.3 Request Headers..12
5.3.4 Response Headers ...14
5.3.5 Pushing Data from the server to the client ..15

5.4 SECURITY..16
6. EXAMPLES ..17
APPENDIX A. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) ..20
APPENDIX B. CHANGE HISTORY (INFORMATIVE) ...21

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 4 (21)

1. Scope
 The SyncML Initiative, Ltd. was a not-for-profit corporation formed by a group of companies who co-operated to
produce an open specification for data synchronization and device management. Prior to SyncML, data synchronization
and device management had been based on a set of different, proprietary protocols, each functioning only with a very
limited number of devices, systems and data types. These non-interoperable technologies have complicated the tasks of
users, manufacturers, service providers, and developers. Further, a proliferation of different, proprietary data
synchronization and device management protocols has placed barriers to the extended use of mobile devices, has
restricted data access and delivery and limited the mobility of the users.

SyncML is a specification that contains the following main components:

• An XML-based representation protocol

• A synchronization protocol and a device management protocol

• Transport bindings for the protocol

The data representation specifies an XML DTD that allows the representation of all the information required to perform
synchronization or device management, including data, metadata and commands. The synchronization and device
management protocols specify how SyncML messages conforming to the DTD are exchanged in order to allow a
SyncML client and server to exchange additions, deletes, updates and other status information.

There are also DTDs which define the representation of information about the device such as memory capacity, and the
representation of various types of meta information such as security credentials.

Although the SyncML specification defines transport bindings that specify how to use a particular transport to exchange
messages and responses, the SyncML representation, synchronization and device management protocols are transport -
independent. Each SyncML package is completely self-contained, and could in principle be carried by any transport.
The initial bindings specified are HTTP, WSP and OBEX, but there is no reason why SyncML could not be
implemented using email or message queues, to list only two alternatives. Because SyncML messages are self-
contained, multiple transports may be used without either the server or client devices having to be aware of the network
topology. Thus, a short-range OBEX connection could be used for local connectivity, with the messages being passed
on via HTTP to an Internet-hosted synchronization server.

To reduce the data size, a binary coding of SyncML based on the WAP Forum's WBXML is defined. Messages may
also be passed in clear text if required. In this and other ways SyncML addresses the bandwidth and resource limitations
imposed by mobile devices.

SyncML is both data type and data store independent. SyncML can carry any data type which can be represented as a
MIME object. To promote interoperability between different implementations of SyncML, the specification includes
the representation formats used for common PIM data.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

Vanessa Hutchison
Deleted this sentence because it makes a normative statement “must” and scope is an informative section.

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 5 (21)

2. References
2.1 Normative References
[PUSH] “Push OTA Protocol Specification”, WAP Forum,

URL:http://www1.wapforum.org/tech/terms.asp?doc=WAP-235-PushOTA-20010425-a.pdf
[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,

URL:http://www.ietf.org/rfc/rfc2119.txt
[RFC2396] “Uniform Resource Identifiers (URI): Generic Syntax”, T. Berners-Lee, et al., August 1998,

URL:http://www.ietf.org/rfc/rfc2396.txt
[RFC2616] “Hypertext Transfer Protocol – HTTP/1.1”, R. Fielding, et al., June 1999,

URL:http://www.ietf.org/rfc/rfc2616.txt
[RFC2617] “HTTP Authentication: Basic and Digest Access Authentication”, J. Franks, et al., June 1999,

URL:http://www.ietf.org/rfc/rfc2617.txt
[SYNCNIS] “SyncML Notification Initiated Session”, Open Mobile AllianceTM

URL:http://www.openmobilealliance.org/tech/docs
[SYNCPRO] “SyncML Synchronization Protocol”, Open Mobile AllianceTM , OMA-SyncML-

DataSyncProtocol-V1_1_2, URL:http://www.openmobilealliance.org/tech/docs
[WBXML] “WAP Binary XML Content Format Specification”, WAP Forum, WAP-240-WBXML,

URL:http://www1.wapforum.org/tech/terms.asp?doc=WAP-192-WBXML-20010725-a.pdf

2.2 Informative References
[SYNCWSP] “SyncML WSP Binding Specification”, Open Mobile AllianceTM ,OMA-SyncML-WSPBinding-

V1_1_2, URL:http://www.openmobilealliance.org/tech/docs
[XML] “Extensible Markup Language (XML) 1.0”, World Wide Web Consortium Recommendation,

http://www.w3.org/TR/REC-xml

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

http://www1.wapforum.org/tech/terms.asp?doc=WAP-235-PushOTA-20010425-a.pdf
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.openmobilealliance.org/tech/docs
http://www.openmobilealliance.org/tech/docs
http://www1.wapforum.org/tech/terms.asp?doc=WAP-192-WBXML-20010725-a.pdf
http://www.openmobilealliance.org/tech/docs
http://www.w3.org/TR/REC-xml

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 6 (21)

3. Terminology and Conventions
3.1 Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to
be informative.

Any reference to components of the SyncML DTD or XML snippets is specified in this typeface.

3.2 Definitions
Cache – A program's local store of response messages and the subsystem that controls its message storage, retrieval,
and deletion. A cache stores cacheable responses in order to reduce the response time and network bandwidth
consumption on future, equivalent requests. Any client or server may include a cache, though a cache cannot be used by
a server that is acting as a tunnel.
Cacheable – A response is cacheable if a cache is allowed to store a copy of the response message for use in answering
subsequent requests. The rules for determining the cacheability of HTTP responses are defined in section 13 of
[RFC2616]. Even if a resource is cacheable, there may be additional constraints on whether a cache can use the cached
copy for a particular request.
Connection – A transport layer virtual circuit established between two programs for the purpose of communication.
Content Negotiation – The mechanism for selecting the appropriate representation when servicing a request, as
described in section 12 of [RFC2616]. The representation of entities in any response can be negotiated (including error
responses).
Entity – The information transferred as the payload of a HTTP request or HTTP response. An entity consists of meta-
information in the form of entity-header fields and content in the form of an entity-body, as described in section 7 of
[RFC2616].
HTTP Client – A program that establishes connections for the purpose of sending HTTP requests.
NOTE: In this document, when the term "client" appears alone, it refers to a HTTP client, not a SyncML client.
HTTP Gateway – A HTTP server which acts as an intermediary for some other server. Unlike a proxy, a gateway
receives requests as if it were the origin server for the requested resource; the requesting client may not be aware that it
is communicating with a gateway.
HTTP Message – The basic unit of HTTP communication, consisting of a structured sequence of octets matching the
syntax defined in section 4 of [RFC2616] and transmitted via the connection.
HTTP Proxy – An intermediary program which acts as both a server and a client for the purpose of making requests
on behalf of other clients. Requests are serviced internally or by passing them on, with possible translation, to other
servers. A proxy MUST implement both the client and server requirements of this specification. A "transparent proxy"
is a proxy that does not modify the request or response beyond what is required for proxy authentication and
identification. A "non-transparent proxy" is a proxy that modifies the request or response in order to provide some
added service to the user agent, such as group annotation services, media type transformation, protocol reduction, or
anonymity filtering. Except where either transparent or non-transparent behavior is explicitly stated, the HTTP proxy
requirements apply to both types of proxies.
HTTP Request – An HTTP request message, as defined in section 5 of [RFC2616].
HTTP Response – An HTTP response message, as defined in section 6 of [RFC2616].
HTTP Server– An application program that accepts connections in order to service HTTP requests by sending back
responses. Any given program may be capable of being both an HTTP client and a server; our use of these terms refers
only to the role being performed by the program for a particular connection, rather than to the program's capabilities in
general. Likewise, any server may act as an HTTP origin server, proxy, gateway, or tunnel, switching behavior based on
the nature of each request.
NOTE: In this document, when the term "server" appears alone, it refers to a HTTP server, not a SyncML server.
Inbound/Outbound – Inbound and outbound refer to the request and response paths for messages: "inbound" means
"traveling toward the origin server", and "outbound" means "traveling toward the user agent."

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 7 (21)

Representation – An entity included with a response that is subject to content negotiation, as described in section 12 of
[RFC2616]. There may exist multiple representations associated with a particular response status.
Resource – A network data object or service that can be identified by a URI, as defined in section 3.2 of [RFC2616].
Resources may be available in multiple representations (e.g. multiple languages, data formats, size, and resolutions) or
vary in other ways.
User Agent – The client which initiates a request. These are often browsers, editors, spiders (web-traversing robots), or
other end user tools.
Origin Server – The HTTP server on which a given resource resides or is to be created.
Tunnel – An intermediary program which is acting as a blind relay between two connections. Once active, a tunnel is
not considered a party to the HTTP communication, though the tunnel may have been initiated by an HTTP request.
The tunnel ceases to exist when both ends of the relayed connections are closed.
Variant – A resource may have one, or more than one, representation(s) associated with it at any given instant. Each of
these representations is termed a "variant". Use of the term "variant" does not necessarily imply that the resource is
subject to content negotiation.
Upstream/Downstream – Upstream and downstream describe the flow of a message: all messages flow from upstream
to downstream.

3.3 Abbreviations
HTTP Hypertext Transfer Protocol [RFC2616]
OMA Open Mobile Alliance
URI Uniform Resource Identifier [RFC2396]
URL Uniform Resource Locator [RFC2396]
WAP Wireless Application Protocol
WBXML WAP Binary XML Content Format
XML Extensible Markup Language

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 8 (21)

4. Introduction
This document defines the binding requirements for communicating SyncML over the Hypertext Transfer Protocol
(HTTP) as defined by [RFC2616]. HTTP is an application-level protocol for distributing information between two
Internet based applications. HTTP can be an ideal protocol for building wide area, distributed systems, such as the
collaborative framework of the World-Wide Web (Web) environment. HTTP is expected to be the primary wireline
protocol used by SyncML clients and servers to communicate with each other. In addition, as wireless networks
increase in bandwidth (e.g., deployment of GPRS networks) and are adapted to support the IP protocol, HTTP will
become the preferred application protocol for connecting wireless SyncML clients and servers.

The HTTP protocol defines a request/response form of communication between two network computers supporting
HTTP applications. Normally, the originator of the request is called the HTTP client. And normally, the recipient of the
request is called the HTTP server.

There are emerging Internet standards for notification or "push" technologies that will allow HTTP servers to also
originate HTTP requests. However, this technology is not currently included in this version of the specification.

HTTP is an ideal protocol for connecting a SyncML client to a SyncML server; and vice a versa. SyncML is intended to
be registered as a MIME media type. This makes it adapted for transfer over HTTP. HTTP is widely supported across
the Internet. There are numerous examples of common implementations of both client and server HTTP applications.
HTTP servers can be adapted to support new HTTP-based application in a straightforward manner. SyncML messages
can be transferred across the Internet and pass through "firewalls", at the perimeter of individual intranets with relative
ease.

HTTP communication usually takes place over a TCP/IP connection. The default TCP port for HTTP is port 80, but
other unregistered ports can also be used. HTTP can also be implemented on top of any other reliable transport service.

An HTTP request message consists of start line containing a request method, target URI, and protocol version; followed
by a MIME-like request header lines containing meta-information about the request; followed by a blank line; followed
by a possible MIME entity body content. The server responds with a status line, including the message's protocol
version and a response code; followed by MIME-like response header lines containing server information and entity
meta-information; followed by a blank line; followed by a optional MIME entity body content.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 9 (21)

5. HTTP Bindings
The following sections define the requirements for the binding of SyncML to HTTP.

5.1 TCP Transport Service
HTTP communication usually takes place over a TCP connection. This binding does not require, but does assume such
a connection. If the HTTP communication takes place over another transport service, then requirements similar to those
defined here for TCP need to be followed. The following sections describe requirements for connection, disconnection
and abort of the TCP connection.

5.1.1 Connection
Prior to an HTTP client connecting to an HTTP server, the SyncML client makes a TCP connection using the TCP open
operation between the client machine and the server machine. The client can use the Internet address resolution for the
HTTP connection URL. The default port is 80. However, another port can be used. The choice of the appropriate port
can be a requirement of the provisioning of the HTTP client to the HTTP server. After creating a successful TCP
connection between the client and server machines, the HTTP connection between the client and server machines can
be established by the SyncML client. It cannot be assumed that the TCP connection is kept open between each HTTP
request and response sequence (i.e., HTTP version 1.1 or higher protocol is being used). Even though HTTP version 1.1
presumes persistent connections, there may have occurred an anomaly such as a timeout condition or "denial of service"
counter-measures on the origin server. Hence, the SyncML client SHOULD be prepared for reconnection between
HTTP requests.

5.1.2 Connection Options
The default port is 80. However, the provisioning of the HTTP client to the HTTP server can require use of another
port.

Persistent connections are supported by this specification and presumed by HTTP version 1.1, but are not required by
implementations conforming to this specification.

5.1.3 Disconnection
The SyncML client is responsible for terminating the connection with a TCP close operation, when the connection is no
longer needed.

If a persistent connection exists between HTTP requests, the HTTP connection is closed by the HTTP client after
receipt of the HTTP response corresponding to the last SyncML request in the synchronization session (i.e., the
SyncML request in the last SyncML package containing a Final element type specified at the end of the SyncBody).

5.1.4 Abort
Sometimes abnormal conditions arise which requires an application to break the TCP connection. In these cases, the
TCP reset operation is initiated to terminate the TCP connection.

5.1.5 Timeouts
In the case of a server timeout, the SyncML client SHOULD establish a new HTTP session with the HTTP server and
attempt to resend the current SyncML package, beginning with the first SyncML command for which the SyncML
client has not received an acknowledgement. In the event that the SyncML client requested that no responses be sent,
the SyncML client SHOULD begin retransmitting with the first SyncML command in the SyncML package.

In the case of a client timeout during a SyncML client-initiated data synchronization, the SyncML server SHOULD
clean up the TCP connection and do no further processing of the SyncML request.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 10 (21)

When using the SyncML Reference Toolkit, the TCP cleanup and drop of the physical connection can be requested by
setting a parameter in the xptCloseCommunication() function.

5.2 Exchanging SyncML Messages
Once an HTTP connection has been established, one or more SyncML Message are transferred over the connection, by
the SyncML client, in the entity body of HTTP requests or received from the server in the entity body of HTTP
responses.

The POST method is used to transfer the SyncML message in an HTTP request.

The body of the HTTP request MUST always include a SyncML message. The content-type for the body MUST be the
appropriate SyncML Message content type.

Generally, the Request-URI, in the start line, is the URI "path" component of the intended recipient resource for the
request. The URI of the origin server is specified by the value in the Host request header.

The Request-URI can also be "*" to indicate that the request is intended for the origin server indicated by the absolute
URI specified in the Host request header. In this case, the origin server would be the SyncML server. However, in
general, the SyncML server will be a resource (e.g., servlet) under the origin server.

The HTTP response will always include the transport response status code. The body of the HTTP Response MUST
always include a SyncML Message. The content-type for the body should be the appropriate SyncML message content
type.

5.2.1 Single Message Per Package
The following is a snippet of the minimal HTTP start line and request headers for a simple HTTP request where the
body of the request is the clear-text, XML [XML] SyncML message media type.

POST ./servlet/syncit HTTP/1.1
Host: www.datasync.org
Content-Type: application/vnd.syncml+xml; charset="utf-8"
Content-Length: 1023
Accept: application/vnd.syncml+xml

Were the body, the binary, WBXML [WBXML] SyncML message media type, then no content encoding is necessary.
HTTP does not support the Content-Transfer-Encoding of MIME, in any case.

The following is a snippet of the minimal HTTP for an example for a simple HTTP response where the body in the
response is the clear-text, XML [XML] SyncML message media type, as specified in the Accept request header in the
HTTP request.

HTTP/1.1 200 OK
Content-Type: application/vnd.syncml+wbxml; charset="utf-8"
Content-Length: 1023

-- HTTP body, represented in a format consistent with the SyncML
content type follows --

5.2.2 Multiple Messages Per Package
Each SyncML message MUST be transferred as a SyncML MIME media type within the body of a HTTP request or
response. When there are multiple SyncML messages per SyncML package, each message is transferred in a separate
HTTP request or response; depending on whether it is a SyncML request or response.

The recipient of a SyncML package can determine if there are more SyncML messages in the package by the absence of
the Final element in the body of the last received SyncML message. When the recipient receives a SyncML message
with the Final element, it is the final message within that SyncML package.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 11 (21)

This version of the specification does NOT support transferring SyncML messages across HTTP using a "multipart”
MIME media type.

5.3 Transport Commands
HTTP uses a number of types of commands. The following sections specify static conformance requirements for use of
these commands in the SyncML HTTP binding.

Static conformance requirements (SCR) specify the features that are optional, mandatory and recommended within
implementations conforming to this specification.

Simple tables are used to specify this information

In these tables, optional features are specified by a "MAY", mandatory features are specified by a "MUST" and
recommended features are specified by a "SHOULD", as defined in [RFC2119].

An implementation which does not include a particular option, MUST be prepared to interoperate with another
implementation, which does include the option, though perhaps with reduced functionality.

5.3.1 Methods
The following table summarizes the support for the HTTP methods in the SyncML binding.

Method Client Requirements Server Requirements
OPTIONS MAY MAY
GET MAY MAY
HEAD MAY MAY
POST MUST MUST
PUT MAY MAY
DELETE MAY MAY
TRACE MAY MAY
CONNECT MAY MAY

The SyncML client MUST use the POST or MAY use the CONNECT method (if supported) to send SyncML requests
to the SyncML server. The CONNECT method is used to initiate a SSL session to authenticate the HTTP client to the
HTTP server. A typical HTTP request start line would look like the following:

POST ./servlet/syncit HTTP/1.1
Host: http://www.syncml.host.com

In this example, the HTTP client is specifying a "./servlet/syncit" path component for the Request-URI, which is a
particular SyncML resource on the HTTP server. The "Host" HTTP header field is needed to specify the absolute URI
for the HTTP server.

The other HTTP methods MAY be supported by implementations conforming to this specification. However, they are
not used at this time by the SyncML client.

5.3.2 General Headers
The following table summarizes the support for the HTTP general headers in the SyncML binding.

General Header Client Requirements Server Requirements
Cache-Control MUST MUST
Connection MAY MAY
Date MAY MAY
Pragma MAY MAY
Trailer MAY MAY

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 12 (21)

Transfer-Encoding MUST MUST
Upgrade MAY MAY
Via MAY MAY
Warning MAY MAY

The Cache-Control general header is used to force control over the caching mechanisms in the request/response chain
between the HTTP client and the HTTP server. Implementations conforming to this specification MUST support this
header. Use of this header with the no-store parameter will assure that SyncML messages sent by the SyncML client
and SyncML server are not stored in cache storage. This will greatly assure that SyncML server and SyncML client are
processing the messages sent by the SyncML clients and SyncML servers, respectively. The following is an example of
the typical specification for this header:

Cache-Control: no-store

In addition, implementations conforming to this specification MUST support the private Cache-Control option to assure
that responses do not get cached and possibly used by agents other than the SyncML client agent or the SyncML server
agent.

Cache-Control: private

The Transfer-Encoding general header is used to indicate what (if any) type of transformation has been applied to the
message body in order to safely transfer it between the sender and the recipient. Implementations conforming to this
specification MUST support the chunked Transfer-Encoding option.

Transfer-Encoding: chunked

The other general headers MAY be supported by implementations conforming to this specification.

5.3.3 Request Headers
The following table summarizes the support for the HTTP request headers in the SyncML binding.

Request Header Client Requirements Server Requirements
Accept MUST MUST
Accept-Charset MUST MUST
Accept-Encoding MAY MAY
Accept-Language MAY MAY
Authorization MAY MAY
Expect MAY MAY
From MAY MAY
Host MAY MAY
If-Match MAY MAY
If-Modified-Since MAY MAY
If-None-Match MAY MAY
If-Range MAY MAY
If-Unmodified-Since MAY MAY
Max-Forwards MAY MAY
Proxy-Authorization MAY MAY
Range MAY MAY
Referer MAY MAY
TE MAY MAY
User-Agent MUST MUST

The Accept request header is used to specify which media types are acceptable in the response.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 13 (21)

Data synchronization client implementations conforming to this specification MUST support this header with either the
"application/vnd.syncml+xml" or "application/vnd.syncml+wbxml" media type values. Data synchronization server
implementations conforming to this specification MUST support both "application/vnd.syncml+xml" and
"application/vnd.syncml+wbxml" media type values, as requested by the SyncML data synchronization client.

Device Management client implementations conforming to this specification MUST support this header with either the
"application/vnd.syncml.dm+xml" or "application/vnd.syncml.dm+wbxml" media type values. Device management
server implementations conforming to this specification MUST support both "application/vnd.syncml.dm+xml" and
"application/vnd.syncml.dm+wbxml" media type values, as requested by the SyncML device management client.

The following is an example of how this header is specified to indicate that the client expects responses formatted
according to the clear-text, XML [XML] representation of SyncML data synchronization:

Accept: application/vnd.syncml+xml

The following is an example of how this header is specified to indicate that the client expects responses formatted
according to the binary, WBXML [WBXML] representation of SyncML device management

Accept: application/vnd.syncml.dm+wbxml

The Accept-Charset request header is used to specify which character sets are acceptable in the response. Server
implementations conforming to this specification MUST support this header with the "UTF-8" character set value.
Client implementations SHOULD support the "UTF-8" character set. Implementations MAY support additional, IANA
registered character set values. Client implementations not supporting UTF-8 SHOULD take careful consideration of
the potential impact of lack of UTF-8 support on interoperability of the device. If a recipient is unable to provide
support for the character set encoding specified in the Accept-Charset request headers sent by the originator, the
recipient MUST send to the originator a HTTP status 406, "Not acceptable". This is in keeping with [RFC2616]. Note
that there will be no SyncML message sent with this response. The following is an example of how this header is
specified to indicate that the client expects responses formatted into the UTF-8 character set:

Accept-Charset: UTF-8

The Authorization request header is used by an HTTP client to authenticate itself to the HTTP server. Implementations
conforming to this specification MAY support this header with the authorization values for "Basic" and "Digest Access
Authentication" authentication schemes, as specified in [RFC2617]. The following is an example of how this header is
specified to allow the HTTP client to authenticate itself with a Base64 character encoding of a userid of Aladdin and
password of open sesame.

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

The Proxy-Authorization request header is similar to the Authorization header except that it is specified by the HTTP
client and used only by the next proxy in the connection chain. Implementations conforming to this specification MAY
support this header and with the authorization values for "Basic" and "Digest Access Authentication" authentication
schemes, as specified in [RFC2617]. The following is an example of how this header is specified to allow the HTTP
client to authenticate itself with a userid of Aladdin and password of open sesame.

Proxy-Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

The User-Agent request header identifies the type of user agent originating the request. This information is useful for
the HTTP server to provide automated recognition of user agents for the sake of tailoring responses to avoid particular
limitations or to take advantage of special features in the HTTP client. Implementations conforming to this specification
MUST support this header and provide it in all HTTP requests. The following is an example of the usage of this header.

User-Agent: Foo Bar Sync Products v3.4

The other request headers MAY be supported by implementations conforming to this specification.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 14 (21)

5.3.4 Response Headers
The following table summarizes the support for the HTTP response headers in the SyncML binding.

Method Client Requirements Server Requirements
Accept-Ranges MAY MAY
Age MAY MAY
Allow MAY MAY
Authentication-Info MAY MAY
Etag MAY MAY
Location MAY MAY
Proxy-Authenticate MAY MAY
Retry-After MAY MAY
Server MAY MAY
Vary MAY MAY
WWW-Authenticate MAY MAY

The Authentication-Info response header is defined by [RFC2617]. The header is used by an HTTP proxy or server to
provide information back to the HTTP client about a successful HTTP client authentication. Implementations
conforming to this specification MAY support this header with the Authentication-Information directives "nextnonce"
and "rspauth". The former directive is used to specify the nonce to be used by the client for a future authentication. The
nonce value SHOULD be a Base64 formatted string. The nextnonce value string MUST be 64 octets or less in length.
The latter directive is used by the HTTP proxy or server to authenticate itself to the HTTP client. The following
example shows how an HTTP server might use this response header to provide authentication credentials to an HTTP
client that has successfully authenticated itself with the HTTP server.

Authentication-Info: nextnonce="Bruce"
rspauth="edd30630e82fabdc1e895d1d3a4c0450"

The Proxy-Authenticate response header is used by an HTTP proxy to challenge the authority of the HTTP client
issuing it an HTTP request. Implementations conforming to this specification MAY support this header with the
challenge values for "Basic" and "Digest Access Authentication" authentication schemes and the "Realm", "Domain",
"Nonce", "Stale" and "Algorithm" authentication parameters, as specified in [RFC2617]. The nonce value SHOULD be
a Base64 formatted string. The "MD5" algorithm MAY be supported by implementations that conform to this
specification. Other algorithms can also be supported. The following is an example of this header being used by an
HTTP proxy to challenge a HTTP client with the Digest authentication scheme for the http://www.syncml.host.com
realm.

Proxy-Authenticate: Digest
Domain="http://www.datasync.org/servlet/syncit"

The WWW-Authenticate response header is used by the HTTP server to challenge the authority of the HTTP client
issuing it an HTTP request. Implementations conforming to this specification MAY support this header with the
challenge values for "Basic" and "Digest Access Authentication" authentication schemes and the "Realm", "Domain",
"Nonce", "Stale" and "Algorithm" authentication parameters, as specified in [RFC2617]. The nonce value SHOULD be
a Base64 formatted string. The "MD5" algorithm MAY be supported by implementations that conform to this
specification. Other algorithms can also be supported. The following is an example of this header being used by an
HTTP server to challenge an HTTP client with the Basic authentication scheme for the WallyWord@syncml.host.com
realm.

WWW-Authenticate: Basic Realm="WallyWorld@syncml.host.com"

The other response headers MAY be supported by implementations conforming to this specification.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 15 (21)

5.3.5 Pushing Data from the server to the client
Pushing data from a server to a client is defined according to [PUSH]. This functionality can be used to accomplish the
Server Alerted Sync as defined in the SyncML Sync protocol specification [SYNCPRO] or Notification as defined in
the Notification Initiated Session specification [SYNCNIS]. The model is as shown below.

The model is analogous to the push model described in [SYNCWSP] with the difference being that instead of the push
services between the Push Proxy Gateway (PPG) and the device being defined by the OTA-WSP protocol they are
defined by the OTA-HTTP protocol. Full details of the specifics of both of these are described in [PUSH].

The Push Application architecture for (connectionless) OTA-WSP and OTA-HTTP are depicted below to illustrate the
difference between server alert over WSP and over HTTP:

Note that the push model is not limited to OTA usage, the model could also be used locally with, for example, a
SyncML server running on a PC connected to a SyncML client via a cable. In this situation the server would be required
to emulate the PPG services. This mechanism might prove useful to vendors who require a means of achieving local
server alerted sync over TCP.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 16 (21)

5.4 Security
HTTP client and HTTP server authentication is based on the mechanism defined in [RFC2617]. Implementations
conforming to this implementation MUST support this mechanism for "Basic" and "Digest Access Authentication". The
Base64 character encoded "Basic" and "MD5" algorithm of the "Digest Access Authentication" authentication schemes
MAY be supported. The HTTP headers and parameters that MUST be supported are described in the previous sections
for request and response headers.

The Content-MD5 header field can be used to provide a message integrity check of the SyncML Message in the body.
Use of this header is a good idea for detecting accidental modification of the entity-body in transit, but is not proof
against malicious attack.

HTTP proxy and HTTP server implementations conforming to this specification MAY support both the ability to
challenge unauthenticated requests and also accept authentication request headers in a request; which will not require
subsequent challenge responses unless some part of the credential is incorrect. The latter requirement is required to
address the need for minimal request/response traffic for mobile networks.

The authentication mechanisms defined by [RFC2617] address protecting the authentication credentials. However, the
remainder of the HTTP request and response messages are available to the eavesdropper. For more robust security for
the HTTP connection, SSL or HTTPS SHOULD be used. These mechanisms are not mandated for implementations
conforming to this specification.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 17 (21)

6. Examples
The XML [XML] in these examples are generally formatted one element type per line for readability purposes, but need
not be formatted as such in actual usage.

The following is a more complex example of an HTTP request with an actual clear-text, XML SyncML message in the
body.

POST ./servlet/syncit HTTP/1.1

Host: http://www.syncml.host.com
Accept: application/vnd.syncml+xml
Accept-Charset: utf-8
Accept-Encodings: chunked
Accept-Language: en-US
Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==
Content-Type: application/vnd.syncml+xml; charset="utf-8"
User-Agent: Foo Bar Sync Products v3.4
Cache-Control: no-store
Transfer-Encoding: chunked

BD
<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target>
<LocURI>http://www.datasync.org/servlet/syncit</LocURI>
</Target>
B6
<Source>
<LocURI>IMEI:001004FF1234567</LocURI>
<LocName>Bruce1's Device</LocName>
</Source>
<Cred>
<Data>QWxhZGRpbjpvcGVuIHNlc2FtZQ==</Data>
</Cred>
</SyncHdr>
<SyncBody>
<Sync>
D2
<CmdID>1</CmdID>
<Target>
<LocURI>./mail/bruce1</LocURI>
</Target>
<Source>
<LocURI>./calendar</LocURI>
</Source>
<Meta><Type xmlns="syncml:metinf">text/x-vcalendar</Type></Meta>
<Update>
<CmdID>2</CmdID>
B3
<Item>
<Source>
<LocURI>./1012</LocURI>
</Source>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 18 (21)

<Data>BEGIN:VCALENDAR VERSION:1.0 BEGIN:VEVENT
DTSTART:20000522T133000Z DTEND:20000522T143000Z SUMMARY:Project
Review 7A CLASS:CONFIDENTIAL CATEGORIES:APPOINTMENT END:VEVENT
END:VCALENDAR
</Data>
</Item>
</Update>
</Sync>
<Final/>
</SyncBody>
</SyncML>

The following is a more complex example of an HTTP response with an actual clear-text, XML SyncML message in
the body.

HTTP/1.1 200 OK
Authentication-Info: nextnonce="Bruce"
rspauth="edd30630e82fabdc1e895d1d3a4c0450"
Content-Type: application/vnd.syncml+wbxml; charset="utf-8"
Content-Length: 1023

<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target>
<LocURI>IMEI:001004FF1234567</LocURI>
</Target>
<Source>
<LocURI>http://www.datasync.org/servlet/syncit</LocURI>
</Source>
<Cred>
<Data>QWxhZGRpbjpvcGVuIHNlc2FtZQ==</Data>
</Cred>
</SyncHdr>
<SyncBody>
<Status>
<MsgRef>1</MsgRef>
<CmdRef>1</CmdRef>
<Cmd>Sync</Cmd>
<TargetRef>./mail/bruce1</TargetRef>
<SourceRef>./calendar</SourceRef>
<StatusItem>
<Data>200</Data>
</StatusItem>
</Status>
<Sync>
<CmdID>1</CmdID>
<Target>
<LocURI>./calendar</LocURI>
</Target>
<Source>
<LocURI>./mail/bruce1</LocURI>
</Source>
<Meta><Type xmlns="syncml:metinf">text/x-vcalendar</Type></Meta>
<Update>
<CmdID>2</CmdID>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 19 (21)

<Item>
<Source>
<LocURI>./50442009</LocURI>
</Source>
<Data>BEGIN:VCALENDAR VERSION:1.0 BEGIN:VEVENT
DTSTART:20000519T210000Z DTEND:20000519T230000Z SUMMARY:Debug Fest
CLASS:CONFIDENTIAL CATEGORIES:APPOINTMENT END:VEVENT END:VCALENDAR
</Data>
</Item>
</Update>
</Sync>
<Final/>
</SyncBody>
</SyncML>

The following is an example of a Server Alerted Sync message delivered using OTA-HTTP.

POST /wappush HTTP/1.1

Host:

Date: Fri, 19 Apr 2002 15:00:05 BST

Content-Type: application/http

Content-Length: 500

X-Wap-Push-OTA-Version: 1.0

HTTP/1.1 200 OK

Date: Fri, 19 Apr 2002 15:00:00 BST

Last-Modified: Date: Fri, 19 Apr 2002 15:00:00 BST

Content-Language: en

Content-Length: 300

Content-Type: application/vnd.syncml+xml

X-Wap-Application-Id: x-wap-application:push.syncml

… insert appropriate message content here …

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 20 (21)

Appendix A. Static Conformance Requirements (Normative)
The static conformance requirements for this specification are specified in sections 5.3.1, 5.3.2, 5.3.3, and 5.3.4.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-HTTPBinding-V1_1_2-20030612-A Page 21 (21)

Appendix B. Change History (Informative)

Approved Version History
Reference Date Description

OMA-SyncML-HTTPBinding-V1_1_2-
20030612-A

12 June 2003 Approved by TP. TP ref# OMA-TP-2003-0265R1

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

	Scope
	References
	Normative References
	Informative References

	Terminology and Conventions
	Conventions
	Definitions
	Abbreviations

	Introduction
	HTTP Bindings
	TCP Transport Service
	Connection
	Connection Options
	Disconnection
	Abort
	Timeouts

	Exchanging SyncML Messages
	Single Message Per Package
	Multiple Messages Per Package

	Transport Commands
	Methods
	General Headers
	Request Headers
	Response Headers
	Pushing Data from the server to the client

	Security

	Examples

