

SyncML WSPBinding, version 1.1.2
Approved Version 12-June-2003

Open Mobile Alliance
OMA-SyncML-WSPBinding-V1_1_2-20030612-A

Continues the Technical Activities
Originated in the SyncML Initiative

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-WSPBinding-V1_1_2-20030612-A Page 2 (14)

 Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this
document may be used, at your sole risk, for any purposes. You may not use this document in any other manner
without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy
this document, provided that you retain all copyright and other proprietary notices contained in the original materials on
any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute
an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or
omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a
timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published
specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is
publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR
Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an
independent IPR review of this document and the information contained herein, and makes no representations or
warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This
document may contain inventions for which you must obtain licenses from third parties before making, using or selling
the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY
OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED
TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR
WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR
IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE
DOCUMENTS.

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

http://www.openmobilealliance.org/UseAgreement.html
http://www.openmobilealliance.org/ipr.html

OMA-SyncML-WSPBinding-V1_1_2-20030612-A Page 3 (14)

Contents
1. SCOPE ...4
2. REFERENCES..5

2.1 NORMATIVE REFERENCES ...5
2.2 INFORMATIVE REFERENCES ..5

3. TERMINOLOGY AND CONVENTIONS ...6
3.1 CONVENTIONS ..6
3.2 DEFINITIONS...6
3.3 ABBREVIATIONS ...6

4. INTRODUCTION...7
5. WSP MAPPING TO SYNCML...8

5.1 MULTIPLE MESSAGES PER PACKAGE ..8
5.2 MIME HEADER TYPE REQUIREMENT..8
5.3 CONNECTION ORIENTED SESSION ...8

5.3.1 Session establishment, S-Connect...8
5.3.2 Exchanging SyncML Data ..9
5.3.3 Temporarily suspending the session, S-Suspend and S-Resume...11
5.3.4 Session close-down, S-Disconnect..11

5.4 CONNECTIONLESS SERVICE ...11
5.5 PUSHING DATA FROM THE SERVER TO THE CLIENT ..11

APPENDIX A. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) ..13
APPENDIX B. CHANGE HISTORY (INFORMATIVE) ...14

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-WSPBinding-V1_1_2-20030612-A Page 4 (14)

1. Scope
The SyncML Initiative, Ltd. was a not-for-profit corporation formed by a group of companies who co-operated to
produce an open specification for data synchronization and device management. Prior to SyncML, data synchronization
and device management had been based on a set of different, proprietary protocols, each functioning only with a very
limited number of devices, systems and data types. These non-interoperable technologies have complicated the tasks of
users, manufacturers, service providers, and developers. Further, a proliferation of different, proprietary data
synchronization and device management protocols has placed barriers to the extended use of mobile devices, has
restricted data access and delivery and limited the mobility of the users.

SyncML Components

SyncML is a specification that contains the following main components:

• An XML-based representation protocol

• A synchronization protocol and a device management protocol

• Transport bindings for the protocol

The data representation specifies an XML DTD that allows the representation of all the information required to perform
synchronization or device management, including data, metadata and commands. The synchronization and device
management protocols specify how SyncML messages conforming to the DTD are exchanged in order to allow a
SyncML client and server to exchange additions, deletes, updates and other status information.

There are also DTDs which define the representation of information about the device such as memory capacity, and the
representation of various types of meta information such as security credentials.

Although the SyncML specification defines transport bindings that specify how to use a particular transport to exchange
messages and responses, the SyncML representation, synchronization and device management protocols are transport-
independent. Each SyncML package is completely self-contained, and could in principle be carried by any transport.
The initial bindings specified are HTTP, WSP and OBEX, but there is no reason why SyncML could not be
implemented using email or message queues, to list only two alternatives. Because SyncML messages are self-
contained, multiple transports may be used without either the server or client devices having to be aware of the network
topology. Thus, a short-range OBEX connection could be used for local connectivity, with the messages being passed
on via HTTP to an Internet-hosted synchronization server.

To reduce the data size, a binary coding of SyncML based on the WAP Forum's WBXML is defined. Messages may
also be passed in clear text if required. In this and other ways SyncML addresses the bandwidth and resource limitations
imposed by mobile devices.

SyncML is both data type and data store independent. SyncML can carry any data type which can be represented as a
MIME object. To promote interoperability between different implementations of SyncML, the specification includes
the representation formats used for common PIM data.

This document is limited to the functionality description for the SyncML WSP bindings

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-WSPBinding-V1_1_2-20030612-A Page 5 (14)

2. References
2.1 Normative References
[PUSH] “Push OTA Protocol Specification”, WAP Forum,

URL:http://www1.wapforum.org/tech/terms.asp?doc=WAP-235-PushOTA-20010425-a.pdf
[PUSHARCH] “Push Architectural Overview”, WAP Forum,

URL:http://www1.wapforum.org/tech/terms.asp?doc=WAP-250-PushArchOverview-
200010703-a.pdf

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,
URL:http://www.ietf.org/rfc/rfc2119.txt

[RFC2616] “Hypertext Transfer Protocol – HTTP/1.1”, IETF, RFC 2616,
URL:http://www.ietf.org/rfc/rfc2616.txt

[SYNCHTTP] “SyncML HTTP Binding Specification”, Open Mobile AllianceTM, OMA-SyncML-
HTTPBinding-V1_1_2, URL:http://www.openmobilealliance.org/tech/docs

[SYNCPRO] “SyncML Synchronization Protocol”, Open Mobile Alliance, OMA-SyncML-
DataSyncProtocol-V1_1_2”, URL:http:www.openmobilealliance.org/tech/docs.

[WBXML] WAP Binary XML Content Format Specification,
URL:http://www1.wapforum.org/tech/terms.asp?doc=SPEC-WBXML-19990616.pdf

[WDP] “Wireless Datagram Protocol Specification”, WAP Forum,
URL:http://www1.wapforum.org/tech/terms.asp?doc=WAP-259-WDP-20010614-a.pdf

[WSP] “Wireless Session Protocol specification”, URL:http://www.wapforum.org/WAP-230-WSP-
20010705-a.pdf

[WTP] “Wireless Transaction Protocol Specification”, WAP Forum,
URL:http://www1.wapforum.org/tech/terms.asp?doc=WAP-224-WTP-20010710-a.pdf

[XML] “Extensible Markup Language (XML) 1.0”, World Wide Web Consortium Recommendation,
URL:http://www.w3.org/TR/REC-xml

2.2 Informative References
NA

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

http://www1.wapforum.org/tech/terms.asp?doc=WAP-235-PushOTA-20010425-a.pdf
http://www1.wapforum.org/tech/terms.asp?doc=WAP-250-PushArchOverview-200010703-a.pdf
http://www1.wapforum.org/tech/terms.asp?doc=WAP-250-PushArchOverview-200010703-a.pdf
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.openmobilealliance.org/tech/docs
http:www.openmobilealliance.org/tech/docs
http://www1.wapforum.org/tech/terms.asp?doc=SPEC-WBXML-19990616.pdf
http://www1.wapforum.org/tech/terms.asp?doc=WAP-259-WDP-20010614-a.pdf
http://www1.wapforum.org/tech/documents/WAP-230-WSP-20010705-a.pdf
http://www1.wapforum.org/tech/documents/WAP-230-WSP-20010705-a.pdf
http://www1.wapforum.org/tech/terms.asp?doc=WAP-224-WTP-20010710-a.pdf
http://www.w3.org/TR/REC-xml

OMA-SyncML-WSPBinding-V1_1_2-20030612-A Page 6 (14)

3. Terminology and Conventions
3.1 Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to
be informative.

Any reference to components of the SyncML DTD or XML snippets is specified in this typeface.

3.2 Definitions
Bearer Network – A bearer network is used to carry the messages of a transport-layer protocol - and ultimately also of
the session layer protocols - between physical devices. During the lifetime of a session, several bearer networks may be
used.
Capability – Capability refers to the session layer protocol facilities and configuration parameters that a client or server
supports.
Capability Negotiation – Capability negotiation is the mechanism for agreeing on session functionality and protocol
options. Session capabilities are negotiated during session establishment.
Capability negotiation allows a server application to determine whether a client can support certain protocol facilities
and configurations.
Client and Server – The term client and server are used in order to map WSP to well known and existing systems. A
client is a device (or application) which initiates a request for a session. The server is a device that passively waits for
session requests from client devices. The server can either accept the request or reject it. An implementation of the WSP
protocol may include only client or server functions in order to minimize the footprint. A client or server may only
support a subset of the protocol facilities, indicating this during protocol capability negotiation.
Connectionless Session Service – Connectionless session service is an unreliable session service. In this mode, only
the request primitive is available to service users, and only the indication primitive is available to the service provider.
Connection-Mode Session Service – Connection-mode session service is a reliable session service. In this mode, both
request and response primitives are available to service users, and both indication and confirm primitives are available
to the service provider.
Content – The entity body sent with a request or response is referred to as content. It is encoded in a format and
encoding defined by the entity-header fields.
Content Negotiation – Content negotiation is the mechanism the server uses to select the appropriate type and
encoding of content when servicing a request. The type and encoding of content in any response can be negotiated.
Content negotiation allows a server application to decide whether a client can support a certain form of content.
Entity – An entity is the information transferred as the payload of a request or response. An entity consists of meta-
information
in the form of entity-header fields and content in the form of an entity-body.
Header – A header contains meta-information. Specifically, a session header contains general information about a
session that remains constant over the lifetime of a session; an entity-header contains meta-information about a
particular request, response or entity body.
Loader – Entity that implements the HTTP protocol. The loader is the interface between the WSP layer and the user
application.

3.3 Abbreviations
WSP Wireless Session Protocol [WSP]
PPG Push Proxy Gateway [PUSH][PUSHARCH]
HTTP Hyper Text Transfer Protocol – HTTP/1.1, [RFC2616]
WBXML WAP Binary XML Content Format [WBXML]
XML Extensible Markup Language [XML]

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-WSPBinding-V1_1_2-20030612-A Page 7 (14)

4. Introduction
This document describes how to use the SyncML over WSP (WAP). The document uses the primitives and methods
defined in the WAP Forum WSP specification as of WAP June 2000 Conformance Release.

The document describes the use of the WSP layer.

The document assumes a scenario consisting of a sync client (e.g. a wap enabled mobile phone) and a server holding
data (e.g. a web-server). Furthermore, it is explained how to initiate a sync-session from the server using the WAP
Push.

WAP [WSP] defines both a connection oriented and a connection less services for data exchange. Furthermore, it
defines a server originated data-push model.

Note that the WAP specification does not specify the Loader, i.e. the interfaces to the different layers in the protocol,
only the messages being used for communication in the actual layers. How the Loader is specified is up to the client (or
server) vendor. The Loader interface is illustrated in the following by the messages going back and forth between the
SyncML user agent and the Loader.

The Session layer protocol family in the WAP architecture is called the Wireless Session Protocol, WSP. WSP provides
the upper-level application layer of WAP with a consistent interface for two session services. The first is a connection-
mode service that operates above a transaction layer protocol WTP, and the second is a connectionless service that
operates above a secure or non-secure datagram transport service. For more information on the transaction and transport
services, please refer to[WTP] “Wireless Application Protocol: Wireless Transaction Protocol Specification” and
[WDP] [WDP]“Wireless Application Protocol: Wireless Datagram Protocol Specification”. WSP provides HTTP 1.1
functionality and incorporates new features such as long-lived sessions, a common facility for data push, capability
negotiation and session suspend/resume. The protocols in the WSP family are optimised for low-bandwidth bearer
networks with relatively long latency.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-WSPBinding-V1_1_2-20030612-A Page 8 (14)

5. WSP mapping to SyncML
The following sections define the requirements for the binding of SyncML to WSP.

5.1 Multiple messages Per Package
The WAP protocol expects to receive a response to every request sent to the WAP gateway. If there are multiple
messages in a SyncML package to be sent, the SyncML server MUST send a response to each message although the
message is not the final one.

The next message can only be sent when the WSP layer in the WAP protocol has received a response.

Each SyncML message MUST be transferred as a SyncML MIME media type within the body of a WSP request or
response. When there are multiple SyncML messages per SyncML package, each message is transferred in a separate
WSP request or response; depending on whether it is a SyncML request or response.

The recipient of a SyncML package can determine if there are more SyncML messages in the package by the absence of
the Final element in the body of the last received SyncML message. When the recipient receives a SyncML message
with the Final element, it is the final message within that SyncML package.

5.2 MIME header type requirement
Data synchronization client implementations conforming to this specification MUST support this header with either the
"application/vnd.syncml+xml" or "application/vnd.syncml+wbxml" media type values. Data synchronization server
implementations conforming to this specification MUST support both "application/vnd.syncml+xml" and
"application/vnd.syncml+wbxml" media type values, as requested by the SyncML data synchronization client.

Device Management client implementations conforming to this specification MUST support this header with either the
"application/vnd.syncml.dm+xml" or "application/vnd.syncml.dm+wbxml" media type values. Device management
server implementations conforming to this specification MUST support both "application/vnd.syncml.dm+xml" and
"application/vnd.syncml.dm+wbxml" media type values, as requested by the SyncML device management client.

5.3 Connection Oriented Session
This section describes how SyncML user agent residing on a WAP client would initiate a SyncML connection oriented
session, exchange data with the server, suspend and resume the session, and then finally close down the established
session.

5.3.1 Session establishment, S-Connect
During a WAP session establishment, a WAP client connects to a WAP gateway. A part of this is the so-called
capability negotiation, during which the server and client negotiate the features supported. Furthermore, attributes that
are static throughout the sessions are exchanged (static headers).

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-WSPBinding-V1_1_2-20030612-A Page 9 (14)

Loader gateway WSP

S-Connect.req
S-Connect.ind

S-Connect.res
S-Connect.cnf

SyncML
agent

Make_Session

Session_OK

Figure 1 Session Establishment

In the example, the Loader implements an interface for the user agent to initiate a session, Make_Session. The Loader
implements the HTTP protocol.

Seen from WSP, the session establishment starts by an S-Connect request to the WSP layer. The request looks as
follows:

S-Connect.req(Server-Address , Client-Address, Client-Headers, Requested-
Capabilities)

In case of success, the connect confirmation returns from the WSP layer as follows:

S-Connect.cnf(Server-Headers , Negotiated-Capabilities)

5.3.2 Exchanging SyncML Data
Once a session is established, the client can start exchanging data with the server using the S-MethodInvoke and S-
MethodResult primitives.

WAP maps the HTTP 1.1 methods; i.e. requests will be done using standard HTTP 1.1 methods. The header and bodies
of the HTTP methods are not used by the WAP stack, and they are passed transparently.

The following example shows a simple POST request from the client.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-WSPBinding-V1_1_2-20030612-A Page 10 (14)

Loader gateway

WSP

S-MethodInvoke.req

S-MethodInvoke.ind

S-MethodInvoke.res
S-MethodInvoke.cnf

S-MethodResult.req
S-MethodResult.ind

S-MethodResult.res
S-MethodResult.cnf

Web-
server

HTTP POST.request

HTTP POST.reply

SyncML
agent

Post(Document)

Reply(Document)

Figure 2 MethodInvoke using HTTP POST

In the implementation example depicted in Figure 2, the SyncML user agent requests a SyncML document to be posted
to the server using the interface made available by the Loader. In a response, the server returns a response SyncML
document back to the client.

5.3.2.1 HTTP header requirement
The HTTP header information is passed transparently over the WAP protocol. But In order to enable the Web server to
decode the posted information the same header information requirements apply for sending SyncML over WSP as for
sending SyncML over HTTP as described in [SYNCHTTP].

5.3.2.2 S-MethodInvoke
The syntax of the MethodInvoke is as follows:

S-MethodInvoke.req(ClientTransActionID, Method, RequestURI, RequestHeaders,
RequestBody)

The HTTP methods supported by WSP are GET, OPTIONS, HEAD, DELETE, TRACE, POST and PUT. Of all the
HTTP methods supported by WSP, the SyncML functionality only requires the POST method. Once the gateway has
processed the request (i.e. forwarded it to the web-server), a confirmation is sent back to the client through the WSP
layer. The syntax of the S-MethodInvoke-confirmation is:

S-MethodInvoke.cnf(ClientTransactionID)

5.3.2.3 S-MethodResult
When the gateway receives the resource requested with the S-MethodInvoke primitive, it send a S-MethodResult
request to the WSP layer of the client, which forwards the request to the user agent as a S-MethodResult-indication of
the following format:

S-MethodResult.ind(ClientTransactionID, Status, ResponseHeaders, ResponseBody)

Once the indication is received, the client should reply to the WSP with a S-MethodResult response:

S-MethodResult.res(ClientTransactionID, Acknowledgement Headers)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-WSPBinding-V1_1_2-20030612-A Page 11 (14)

5.3.3 Temporarily suspending the session, S-Suspend and S-Resume
WSP allows for the application layer to suspend a session. Suspending a session means that the sessions can no longer
be used to communicate through until the session is resumed.

S-Suspend.req()

The indication coming back from WSP is of the following format:

S-Suspend.req(Reason)

5.3.4 Session close-down, S-Disconnect
The Disconnect primitive is used for terminating the active session.

5.4 Connectionless service
The connectionless service offered by WSP offers a connectionless, and potentially unreliable, data exchange service.
Following example shows a POST request using the connectionless service.

Loader gatewayWSP

S-Unit_MethodInvoke.req
S-Unit_MethodInvoke.ind

S-Unit_MethodResult.req

S-Unit_MethodResult.ind

Web-server

HTTP POST.request

HTTP POST.reply

SyncML
agent

Post(document)

Reply(Document)

Figure 3 Connectionless Unit_MethodInvoke using HTTP POST

Only two primitives are supported by the connectionless service, MethodInvoke and Push. They both work as with the
Session Oriented Service, but without the confirmation. Refer to the Session Oriented Service for details.

5.5 Pushing data from the server to the client
Pushing data from a server to a client in WAP is currently only defined using HTTP. This functionality can be used to
accomplish the Server Alerted Sync as defined in the SyncML Sync protocol specification [SYNCPRO] . The model is
as shown below.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-WSPBinding-V1_1_2-20030612-A Page 12 (14)

Client Push Proxy

Gateway
Internet Push Initiator

Push
Access
Protocol

Push Over-The-
Air Protocol (OTA

HTTP)

Figure 4 Push Model

The initiator of the push uses HTTP POST to send a XML document to the Push Proxy Gateway (PPG). The push
message consists of two components; a control entity (containing e.g. information about when the push message
expires) and the content to be pushed to the client. All WAP content types can be pushed.

When pushing SyncML data from the server to the client, the PUSH id 0x05 MUST be used and either of the content
types defined in chapter 5.2 MUST be used.

The PUSH model defined two different modes; confirmed and non-confirmed. The confirmed push requires an active
WSP session. If no such session is running, a session establishment request can be issued from the PPG to a special
application residing in the client. This application will initiate the session, where-after the push can be accomplished.

The non-confirmed push messages does not require a session.

A special push dispatcher in the client receives the push message, and forwards it to the right application, determined by
the application identifier in the push message.

Once the right application receives the push content, it might choose to pull more content from a server. This is done
using the standard WSP protocols as described in this document.

As such, the client that receives the pushed content doesn't interface directly to WSP.

 Msg
dispatcher

Push Proxy
gateway WSP

HTTP.POST(push msg)

Push
originator

HTTP.reply(confirmation)

S-CPush.req

S-Cpush.ind

Push content
S-Cpush.res

S-Cpush.cnf

HTTP.POST(push status)

HTTP.reply(confirmation)

SyncML
agent

Figure 5 Push scenario

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-WSPBinding-V1_1_2-20030612-A Page 13 (14)

Appendix A. Static Conformance Requirements (Normative)
Static conformance requirements (SCR) specify the features that are optional, mandatory and recommended within
implementations conforming to this specification.

A simple table are used to specify this information.

In this table, optional features are specified by a "MAY", mandatory features are specified by a "MUST" and
recommended features are specified by a "SHOULD". An implementation which does not include a particular option
MUST be prepared to interoperate with another implementation which does include the option, though perhaps with
reduced functionality.

The following specifies the static conformance requirements for SyncML over WSP devices conforming to this
specification.

Support of Synchronization Server Support of Synchronization Client Element Type

Sending Receiving Sending Receiving

POST MUST MUST MUST MUST

PUSH MAY MAY --- MAY

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-WSPBinding-V1_1_2-20030612-A Page 14 (14)

Appendix B. Change History (Informative)

B.1 Approved Version History
Reference Date Description

OMA-SyncML-WSPBinding-V1_1_2-
20030612-A

12 June 2003 Approved by TP. TP ref# OMA-TP-2003-0265R1

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

	Scope
	References
	Normative References
	Informative References

	Terminology and Conventions
	Conventions
	Definitions
	Abbreviations

	Introduction
	WSP mapping to SyncML
	Multiple messages Per Package
	MIME header type requirement
	Connection Oriented Session
	Session establishment, S-Connect
	Exchanging SyncML Data
	HTTP header requirement
	S-MethodInvoke
	S-MethodResult

	Temporarily suspending the session, S-Suspend and S-Resume
	Session close-down, S-Disconnect

	Connectionless service
	Pushing data from the server to the client

