
IPSO Alliance Z. Shelby
Interop Committee Sensinode
 C. Chauvenet
 Watteco
 August 24, 2012

 The IPSO Application Framework
 draft-ipso-app-framework-04

Abstract

 This document defines a RESTful design for use in IP smart object
 systems such as Home Automation, Building Automation and other M2M
 applications. This design defines sets of REST interfaces that may
 be used by a smart object to represent its available resources,
 interact with other smart objects and backend services. This
 framework is designed to be complementary to existing Web profiles
 including SEP2 and oBIX. The document is not and may never be a
 standard of any kind. It should be considered only as work in
 progress.

Copyright Notice

 Copyright (c) 2012 IPSO Alliance and the persons identified as the
 document authors. All rights reserved.

 [Page 1]

IPSO Draft The IPSO Application Framework August 2012

Table of Contents

 1. Overview . 3
 1.1. Function Sets . 3
 1.1.1. Path Template . 4
 1.1.2. Resource Type . 4
 1.1.3. Interface Description 4
 1.1.4. Data Type . 4
 1.2. Interaction Model . 4
 1.3. Discovery . 5
 2. Function Sets . 5
 2.1. Device . 5
 2.2. General Purpose IO . 7
 2.3. Power . 8
 2.4. Load Control . 9
 2.5. Sensors . 10
 2.6. Light Control . 11
 2.7. Message . 11
 2.8. Location . 12
 2.9. Configuration . 13
 3. Data Formats . 14
 3.1. text/plain . 14
 3.2. SenML . 14
 4. Examples . 15
 5. Security Considerations 17
 6. Acknowledgments . 17
 7. Changelog . 17
 8. References . 18
 8.1. Normative References 18
 8.2. Informative References 18
 Authors' Addresses . 18

 [Page 2]

IPSO Draft The IPSO Application Framework August 2012

1. Overview

 The IPSO Application Framework makes use of IETF standards as building
 blocks for a simple and efficient RESTful design model for IP smart
 objects. The framework may be used over either HTTP [RFC2616] or CoAP
 [I-D.ietf-core-coap] web transfer protocols. This section describes
 the overall design principles of the framework.

 HTTP, REST, XML, JSON, COAP and other key components of web
 technology are powerful mechanisms in an Internet of Things
 application. However, they leave a lot of room for the application
 implementers to choose particular ways to represent data and
 operations on it.

 This document specifies a particular template for using these
 mechanisms to represent certain classes of typical Internet of Things
 applications. The document is not and may never be a standard of any
 kind. It should be considered only as work in progress. The
 communication patterns described herein do not represent the only way
 to implement applications. Indeed, we expect applications to be
 developed with the full richness of the web communications model,
 including many standardized application models.

 However, we have found these simple patterns helpful in a number of
 cases and they may make it easier to develop basic applications
 without having to re-create the communications patterns and data
 formats every time. The IPSO interoperability committee sees this
 document as helpful in testing practical interoperability among a
 number of specific devices, for instance.

1.1. Function Sets

 The framework is organized into groups of resource types called
 Function Sets. A Function Set has a recommended root path, under
 which its sub-resources are organized. Each Function Set is assigned
 a Resource Type parameter, therefore making it possible to discover
 it. A Function Set SHOULD be located at its recommended root path on
 a web server, however it MAY be located under an alternative path if
 necessary (for example multi-purpose devices, gateways etc.).

 In a Function Set, types of resources are defined. Each type
 includes a human readable name, a path template, a Resource Type for
 discovery, the Interface Definition and the data type and allowed
 values.

 [Page 3]

IPSO Draft The IPSO Application Framework August 2012

1.1.1. Path Template

 The path template includes a possible index {#} parameter, and
 possible fixed path segments. The index {#} allows for multiple
 instances of this type of resource, and can be any string. The root
 resource of a function set (e.g. for /sen/{#} the root is /sen) may
 optionally support the CoRE Batch (core#b) interface definition
 [I-D.shelby-core-interfaces]. If supported, this allows a single
 request on the parent to manipulate the values of the sub-resources
 at once (e.g. a GET on /sen would return a SenML payload with the
 values of all the sub-resources of /sen).

1.1.2. Resource Type

 The Resource Type parameter defines the value that MUST be included
 in the rt= field of the CoRE Link Format when describing a link to
 this resource. This value enables resources to be discovered.
 Values in this field are in the form "namespace:type", where
 namespace references the specification where the type is defined.
 Currently supported namespaces are "ipso." refering to resource types
 defined in this specification, and "ucum:" used for generic sensor
 units from the Unified Code for Units of Measure (UCUM) specification
 [unitsofmeasure.org]. It is expected that other namespaces will be
 defined in the future.

1.1.3. Interface Description

 The Interface Description parameter defines the REST interface for
 that type of resource. This specification makes use of the basic
 CoRE resource types defined in [I-D.shelby-core-interfaces]. The
 Interface Description MAY be elided from link descriptions of
 resource types defined in the framework, but SHOULD be included for
 custom extensions to the framework.

1.1.4. Data Type

 The Data Type field defines the type of value (and possible range)
 that is returned in response to a GET for that resource or accepted
 with a PUT. The actual format of this data is returned in either
 text/plain (MUST be supported) or application/senml+json (optional)
 formats as defined in Section 3.

1.2. Interaction Model

 This framework is designed for a simple client-server interaction
 model on atomic resources, in order to minimize complexity. An IP
 smart object runs a simple web server (HTTP or CoAP) and exposes
 resources that conform to this framework. Other IP smart objects or

 [Page 4]

IPSO Draft The IPSO Application Framework August 2012

 backend services that want to interact with that IP smart object, act
 as a client and make requests to interact with those resources. When
 using HTTP, polling is used to request values. When using CoAP both
 polling and the use of Observation is supported including the query
 string parameters defined in [I-D.shelby-core-interfaces]. The use
 of Observation is highly recommended when there is a need for
 continuous readings from a resource.

1.3. Discovery

 The resource semantics defined in this framework are compatible with
 Web Linking [RFC5988] and the CoRE Link Format
 [I-D.ietf-core-link-format]. A device using to this framework SHOULD
 make those resources discoverable by providing links to the resources
 on the path /.well-known/core as defined in
 [I-D.ietf-core-link-format].

 In addition, a device using this framework MAY in addition register
 its resources to a Resource Directory using the registration
 interface provided by a Resource Directory is defined in
 [I-D.shelby-core-resource-directory] if such a directory is
 available.

2. Function Sets

 +--------------------+-----------+--------------+
 | Function Set | Root Path | Resouce Type |
 +--------------------+-----------+--------------+
 | Device | /dev | ipso.dev |
 | General Purpose IO | /gpio | ipso.gpio |
 | Power | /pwr | ipso.pwr |
 | Load Control | /load | ipso.load |
 | Sensors | /sen | ipso.sen |
 | Light Control | /lt | ipso.lt |
 | Message | /msg | ipso.msg |
 | Location | /loc | ipso.loc |
 | Configuration | /cfg | ipso.cfg |
 +--------------------+-----------+--------------+

2.1. Device

 This function set is used to represent information about the IP smart
 object device itself, including but not limited to its manufacturer,
 serial number and name. This function set MAY be extended with
 custom resource types.

 [Page 5]

IPSO Draft The IPSO Application Framework August 2012

 +-------------+---------------+----------------+------+------+------+
 | Type | Path | RT | IF | Type | Unit |
 +-------------+---------------+----------------+------+------+------+
Manufacture	/dev/mfg	ipso.dev.mfg	rp	s	
r					
Model	/dev/mdl	ipso.dev.mdl	rp	s	
Hardware	/dev/mdl/hw	ipso.dev.mdl.h	rp	s	
Revision		w			
Software	/dev/mdl/sw	ipso.dev.mdl.s	rp	s	
Version		w			
Serial	/dev/ser	ipso.dev.ser	rp	s	
Name	/dev/n	ipso.dev.n	p,rp	s	
Power	/dev/pwr/{#}	ipso.dev.pwr	rp	e	
Supply					
Power	/dev/pwr/{#}/	ipso.dev.pwr.v	s	d	V
Supply	v				
Voltage					
Time	/dev/time	ipso.dev.time	p,	i	s
			rp		
Uptime	/dev/uptime	ipso.dev.uptim	s	i	s
		e			
 +-------------+---------------+----------------+------+------+------+

 Manufacturer: The manufacturer of the device as a string.

 Model: The model of the device as a string.

 Hardware Revision: The version of the hardware of the device as a
 string.

 Software Version: The version of the software embedded in the device
 as a string.

 Serial: The serial number of the device as a string.

 Name: The descriptive or functional name of the device as a string.

 Power Supply: The type of power supply as an enumeration Table 1.

 Power Supply Voltage: The supply level of the device in Volts.

 Time: POSIX time as the number of seconds that have elapsed since
 midnight Coordinated Universal Time (UTC), January 1, 1970.

 Uptime: The number of seconds that have elapsed since the device was
 turned on.

 [Page 6]

IPSO Draft The IPSO Application Framework August 2012

 +-------------+-----------+
 | Enumeration | Name |
 +-------------+-----------+
 | 0 | Line |
 | 1 | Battery |
 | 2 | Harvester |
 +-------------+-----------+

 Table 1: Power Supply Enumerations

2.2. General Purpose IO

 This function set is used to represent general purpose IO related
 resources of a device, including press buttons, switches, digital
 inputs and outputs, and analogue inputs and outputs. The following
 table defines the kinds of sub-resource defined for the function set.

 +-----------+-----------------+-----------------+----+------+-------+
 | Type | Path | RT | IF | Type | Unit |
 +-----------+-----------------+-----------------+----+------+-------+
Button	/gpio/btn/{#}	ipso.gpio.btn	s	i	
Digital	/gpio/din/{#}	ipso.gpio.din	s	b	
Input					
Digital	/gpio/dout/{#}	ipso.gpio.dout	a	b	
Output					
Analog	/gpio/ain/{#}	ipso.gpio.ain	s	d	V
Input					
Analog	/gpio/aout/{#}	ipso.gpio.aout	a	d	V
Output					
Dimmer	/gpio/dimin/{#}	ipso.gpio.dimin	s	i	0-100
Input					%
 +-----------+-----------------+-----------------+----+------+-------+

 Button: This resource type represents a button, and is modeled as an
 integer counter that is increased by one each time the button is
 pressed. When first initialized, this resource MUST be set to 0.

 Digital Input: A digital input resource represents the boolean
 digital value (1,0) of a GPIO line set to input mode.

 Digital Output: A digital output resource represents the boolean
 digital value (1,0) of a GPIO line set to output mode. A GET on
 this resource returns the current output value, and a PUT sets a
 new output value.

 [Page 7]

IPSO Draft The IPSO Application Framework August 2012

 Analog Input: An analog input resource represents the decimal value
 in Volts of a GPIO line set to input mode.

 Analog Output: An analog output resource represents the decimal
 value in Volts of a GPIO line set to output mode. A GET on this
 resource returns the current output value, and a PUT sets a new
 output value.

 Dimmer Input: A variable digital input resource with possible values
 0-100 as an integer in %.

2.3. Power

 This function set is used to represent power measurement and control
 related resources, such as power meters, relays and loads. The
 following table defines the kinds of sub-resource defined for the
 function set. Not all instances of the power function set are
 required to support all sub-resources. For example a simple power
 measurement sensor might only support the Instantaneaous Power sub-
 resouce.

 +----------------+--------------+--------------+----+------+--------+
 | Type | Path | RT | IF | Type | Unit |
 +----------------+--------------+--------------+----+------+--------+
Instantaneous	/pwr/{#}/w	ipso.pwr.w	s	d	W
Power					
Cumulative	/pwr/{#}/kwh	ipso.pwr.kwh	s	d	kWh
Power					
Load Relay	/pwr/{#}/rel	ipso.pwr.rel	a	b	
Load Dimmer	/pwr/{#}/dim	ipso.pwr.dim	a	i	0-100
					%
 +----------------+--------------+--------------+----+------+--------+

 Instantaneous Power: This resource type returns the instantaneous
 power of a load as a Decimal value in W.

 Cumulative Power: This resource type returns the cumulative power of
 a load as a Decimal value in kWh. The value SHOULD be set to zero
 on initialization, however the value may be saved and retrieved
 from non-volatile memory.

 Load Relay: This resource represents a relay attached to the load,
 which can be controlled, the setting of which is a Boolean value
 (1,0). A GET on the resource returns the current state of the
 relay, and a PUT on the resource sets a new state.

 [Page 8]

IPSO Draft The IPSO Application Framework August 2012

 Load Dimmer: This resource represents a power controller attached to
 the load, which can be controlled as a % between 0-100. A GET on
 the resource returns the current state, and a PUT on the resource
 sets a new state.

2.4. Load Control

 This function set is used for demand-response load control and other
 load control in automation application (not limited to power).

 +------------------+------------+----------------+----+------+------+
 | Type | Path | RT | IF | Type | Unit |
 +------------------+------------+----------------+----+------+------+
Event Identifier	/load/id	ipso.load.id	p	s	
Start Time	/load/time	ipso.load.time	p	i	s
Duration In Min	/load/dur	ipso.load.dur	p	i	min
Criticality	/load/crt	ipso.load.crt	p	e	
Level					
Avg Load Adj Pct	/load/lap	ipso.load.lap	p	d	%
Duty Cycle	/load/dc	ipso.load.dc	p	d	%
 +------------------+------------+----------------+----+------+------+

 Event Identifier: The event identifier as a string.

 Start Time: Time when the load control event will start stated as
 the number of seconds that have elapsed since midnight Coordinated
 Universal Time (UTC), January 1, 1970. If set to 0, the load
 control event starts immediately.

 Duration in Min: The duration of the load control event.

 Criticality Level: The criticality of the event. The device
 receiving the event will react in an appropriate fashion for the
 device.

 Avg Load Adj Pct: (optional) Defines the maximum energy usage of the
 receivng device, as a percentage of the device's normal maximum
 energy usage.

 Duty Cycle: (optional) Defines the duty cycle for the load control
 event, i.e, what percentage of time the receiving device is
 allowed to be on.

 [Page 9]

IPSO Draft The IPSO Application Framework August 2012

 +-------------+--------------------+
 | Enumeration | Name |
 +-------------+--------------------+
 | 0 | Green |
 | 1 | Level_1 |
 | 2 | Level_2 |
 | 3 | Level_3 |
 | 4 | Level_4 |
 | 5 | Level_5 |
 | 6 | Emergency |
 | 7 | Planned_Outage |
 | 8 | Service_Disconnect |
 +-------------+--------------------+

 Table 2: Criticality Level Enumerations

2.5. Sensors

 This function set is used to represent simple types of sensors. This
 function set MAY be extended with custom resource types.

 +---------+-----------------+---------------------+----+------+------+
 | Type | Path | RT | IF | Type | Unit |
 +---------+-----------------+---------------------+----+------+------+
Motion	/sen/{#}	ipso.sen.mot	s	i	
Motion	/sen/{#}/status	ipso.sen.mot.status	s	b	
Status					
Contact	/sen/{#}	ipso.sen.con	s	i	
Contact	/sen/{#}/status	ipso.sen.con.status	s	b	
Status					
Generic	/sen/{#}	ucum.{unit}	s	d	
 +---------+-----------------+---------------------+----+------+------+

 Motion: This resource type represents a motion sensor, and is
 modeled as an integer counter that is increased by one each time
 an event occurs. When first initialized, this resource MUST be
 set to 0.

 Motion Status: This resource type represents the status of a motion
 sensor as a boolean value, with 0 indicating no presence and 1
 indicating presence.

 [Page 10]

IPSO Draft The IPSO Application Framework August 2012

 Contact: This resource type represents a contact or other kind of
 proximity sensor, and is modeled as an integer counter that is
 increased by one each time an event occurs. When first
 initialized, this resource MUST be set to 0.

 Contact Status: This resource type represents the status of a
 contact sensor as a boolean value, with 0 indicating no no contact
 and 1 indicating contact.

 Generic: This resource type allows sensors with generic units to be
 represented with a decimal value. The resource type is set to
 "ucum:{unit}" where {unit} is replaced by one of the units in the
 Unified Code for Units of Measure (UCUM) specification
 [unitsofmeasure.org].

2.6. Light Control

 This function set is used to control a light source, such as a LED or
 other light. It allows a light to be turned on or off and its dimmer
 setting to be control as a % between 0 and 100. Not all lights are
 expected to have a dimmer control (for example simple LEDs).

 +---------------+-------------+-------------+----+------+---------+
 | Type | Path | RT | IF | Type | Unit |
 +---------------+-------------+-------------+----+------+---------+
 | Light Control | /lt/{#}/on | ipso.lt.on | a | b | |
 | Light Dimmer | /lt/{#}/dim | ipso.lt.dim | a | i | 0-100 % |
 +---------------+-------------+-------------+----+------+---------+

 Light Control: This resource represents a light, which can be
 controlled, the setting of which is a Boolean value (1,0) where 1
 is on and 0 is off. A GET on the resource returns the current
 state of the light, and a PUT on the resource sets a new state.

 Light Dimmer: This resource represents a light dimmer setting, which
 has an Integer value between 0 and 100 as a percentage. A GET on
 the resource returns the current state of the dimmer, and a PUT on
 the resource sets a new state.

2.7. Message

 This function set is used by a smart object to make messages
 available to others, for example status, alarms, user display strings
 and other logs. This function set MAY be extended with custom
 resource types.

 [Page 11]

IPSO Draft The IPSO Application Framework August 2012

 +---------+-------------+-----------------+------+------+------+
 | Type | Path | RT | IF | Type | Unit |
 +---------+-------------+-----------------+------+------+------+
 | Status | /msg/status | ipso.msg.status | p,rp | s | |
 | Alarms | /msg/alarms | ipso.msg.alarms | p,rp | s | |
 | Display | /msg/disp | ipso.msg.disp | p,rp | s | |
 +---------+-------------+-----------------+------+------+------+

 Status: The current status of the device as a string.

 Alarms: Alarm messages of the device as a string. This resource
 returns the latest alarm.

 Display: This resource is used to provide an interface to a text
 display.

2.8. Location

 This function set allows the location of a device and related meta-
 data to be made available, for example in map based or tracking
 applications. This function set is designed to be useable by both
 GPS coordinate and local coordinate based positioning.

 +-------------------+----------+--------------+----+------+---------+
 | Type | Path | RT | IF | Type | Unit |
 +-------------------+----------+--------------+----+------+---------+
GPS Location	/loc/gps	ipso.loc.gps	s	s	Lon,Lat
XY Location	/loc/xy	ipso.loc.xy	s	s	X,Y
Semantic Location	/loc/sem	ipso.loc.sem	s	s	
Fix	/loc/fix	ipso.loc.fix	s	b	
Period	/loc/per	ipso.loc.per	p	i	s
 +-------------------+----------+--------------+----+------+---------+

 GPS Location: This resource represents the current global position
 of the device as a String with the format {Lon,Lat}.

 XY Location: This resource represents the current local position of
 the device as a String with the format {X,Y} where X and Y are in
 meters. It is assumed that the anchor position for the
 application or deployment is known.

 Semantic Location: This resource can contain the semantic location
 of a device, such as "room5", "Corner Cafe", "High Street 24" or
 "Building A".

 [Page 12]

IPSO Draft The IPSO Application Framework August 2012

 Fix: This resource indicates if there is currently a valid fix on
 the location as a Boolean value (1,0).

 Period: This resource is the period that the location values are
 updated as an Integer in seconds. A GET on this resouce retrieves
 the current period, and a PUT sets a new period.

2.9. Configuration

 This function set is used to configure an end-point, or discover
 configuration parameters from another end-point.

 +----------+----------------+--------------------+----+------+------+
 | Type | Path | RT | IF | Type | Unit |
 +----------+----------------+--------------------+----+------+------+
Services	/cfg/services	ipso.cfg.services		s	
Stack	/cfg/stack	ipso.cfg.stack	p	s	
Stack	/cfg/stack/phy	ipso.cfg.stack.phy	p	s	
PHY					
Stack	/cfg/stack/mac	ipso.cfg.stack.mac	p	s	
MAC					
Stack	/cfg/stack/net	ipso.cfg.stack.net	p	s	
NET					
Stack	/cfg/stack/rtg	ipso.cfg.stack.rtg	p	s	
RTG					
 +----------+----------------+--------------------+----+------+------+

 Services: The services resource type contains a list of links in
 CoRE Link Format (application/link-format) that describe the
 services supported by an end-point, and the service configurations
 of the end-point. An example service that an end-point could be
 configured for is a Resource Directory. A service is identified
 by its Resource Type which is included in the rt= field of a link
 (a Resource Directory has rt="core.rd" for example). A GET to
 this resource returns the list of supported services and services
 currently configured as links. A PUT to this resource replaces
 the configured services with the links included in the body of the
 request. A DELETE to this resource removes the configured
 services.

 Stack: The Stack set of resources describes and configures the set
 of communication stack protocols supported by this endpoint.

 The Services resource returns its list of supported services by
 including the following link in its Services links where the list of
 supported services is included in the Resource Type attribute:

 [Page 13]

IPSO Draft The IPSO Application Framework August 2012

 </cfg/services>;rt="core.rd core.mp foo"

 An example of a configured Resource Directory service is the
 following:

 <coap://{IP address of RD}/rd>;rt="core.rd";d="default";ep="sensor693"

3. Data Formats

 This section descibes the resource representations supported by this
 framework in more detail.

3.1. text/plain

 When the resource reprsentation of a sensor, configuration parameter
 or other information is fully atomic and does not require any meta-
 data to be included with it, then plain text is an ideal way to
 represent the data. In this framework, the resource representations
 of all interface types MUST be available in this format, indicated by
 the Media Type text/plain. In this data format, all data types are
 represented in ASCII using XSD data type definitions.

3.2. SenML

 The Sensor Markup Langauge (SenML) is an IETF specification that
 provides a simple way to represent sensor and other parameter
 information typically available from constrained embedded devices
 [I-D.jennings-senml]. SenML provides an object model where an array
 of measurement or parameter values along with common base information
 can be modeled. This object can then be serialized in JSON, XML or
 EXI formats. By default, this framework makes use of the JSON format
 of SenML. Resource representations in this framework MAY also be
 provided in application/senml+json format in addition to text/plain.

 In this data format, data types are represented using SenML value
 fields.

 [Page 14]

IPSO Draft The IPSO Application Framework August 2012

 +-------------+-------------------+-------------------+
 | Data Type | text/plain Format | SenML Field |
 +-------------+-------------------+-------------------+
 | b (boolean) | xsd:boolean | Boolean Value (v) |
 | s (string) | xsd:string | String Value (sv) |
 | e (enum) | xsd:integer | Value (v) |
 | i (integer) | xsd:integer | Value (v) |
 | d (decimal) | xsd:decimal | Value (v) |
 +-------------+-------------------+-------------------+

4. Examples

 An example design of a theoretical plug socket sensor, with two plugs
 (index of 0 and 1) a button and a LED, along with temperature and CO2
 sensors in CoRE Link Format. The following examples make use of this
 resource design.

 </dev/mfg>;rt="ipso.dev.mfg",
 </dev/ser>;rt="ipso.dev.ser",
 </dev/mdl>;rt="ipso.dev.mod",
 </pwr/0/w>;rt="ipso.pwr.w",
 </pwr/0/kwh>;rt="ipso.pwr.kwh",
 </pwr/0/rel>;rt="ipso.pwr.rel",
 </pwr/1/w>;rt="ipso.pwr.w",
 </pwr/1/kwh>;rt="ipso.pwr.kwh",
 </pwr/1/rel>;rt="ipso.pwr.rel",
 </gpio/btn/0>;rt="ipso.gpio.btn",
 </lt/led0/on>;rt="ipso.lt.on",
 </sen/temp>;rt="ucum.Cel";obs,
 </sen/co2>;rt="ucum.ppm"

 In this example the resources in the Device Function Set are
 requested.

 Req: GET /dev/mfg (Accept: text/plain)
 Res: 2.05 Content (text/plain)
 Body: IPSO Alliance

 Req: GET /dev/ser (Accept: text/plain)
 Res: 2.05 Content (text/plain)
 Body: 3450232

 Req: GET /dev/mdl (Accept: text/plain)
 Res: 2.05 Content (text/plain)
 Body: SuperPlug300

 [Page 15]

IPSO Draft The IPSO Application Framework August 2012

 In this example the power of plug 0 is read (123 W), the relay shut
 off (0), and the power read again (0 W).

 Req: GET /pwr/0/w (Accept: text/plain)
 Res: 2.05 Content (text/plain)
 Body: 123

 Req: PUT /pwr/0/rel (Accept: text/plain)
 Body: 0
 Res: 2.04 Changed (text/plain)

 Req: GET /pwr/0/w (Accept: text/plain)
 Res: 2.05 Content (text/plain)
 Body: 0

 This example shows the use of CoAP Observe to push a new value of the
 /sen/temp sensor from the server to the client whenever the resource
 changes.

 Req: GET /sen/temp (Accept: text/plain) (Observe:0)
 Res: 2.05 Content (text/plain) (Observe:0)
 Body: 23

 Res: 2.05 Content (text/plain) (Observe:1)
 Body: 23.5

 Res: 2.05 Content (text/plain) (Observe:2)
 Body: 24

 Res: 2.05 Content (text/plain) (Observe:3)
 Body: 24.6

 ...

 This example shows the use of CoAP Observe to push a new value of the
 /sen/temp sensor from the server to the client whenever the resource
 changes by at least 1 degree.

 [Page 16]

IPSO Draft The IPSO Application Framework August 2012

 Req: GET /sen/temp?st=1 (Accept: text/plain) (Observe:0)
 Res: 2.05 Content (text/plain) (Observe:0)
 Body: 23

 Res: 2.05 Content (text/plain) (Observe:1)
 Body: 24

 ...

5. Security Considerations

 The security considerations discussed in [I-D.ietf-core-coap],
 [I-D.ietf-core-link-format] and [I-D.shelby-core-interfaces] apply to
 this specification.

 Writable parameter resources and actuator resources SHOULD be
 protected with DTLS or TLS including access control, unless a
 sufficient underlying security mechanism is available.

6. Acknowledgments

 Acknowledgement is given to members of the IPSO Alliance where the
 initial idea and further improvements to this document have been
 discussed, and to Szymon Sasin, Cedric Chauvenet, Daniel Gavelle,
 Robert Assimiti, Jari Arkko and Milt Roselinsky who have provided
 useful discussion and input to the concepts in this document.

7. Changelog

 Changes from -03 to -04:

 o Added the load control function set

 o Added the configuration function set

 o New device function set resources

 o New GPIO dimmer input resource

 o Improved the table structure

 o Added an enumeration data type

 [Page 17]

IPSO Draft The IPSO Application Framework August 2012

8. References

8.1. Normative References

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
 "Constrained Application Protocol (CoAP)",
 draft-ietf-core-coap-11 (work in progress), July 2012.

 [I-D.ietf-core-link-format]
 Shelby, Z., "CoRE Link Format",
 draft-ietf-core-link-format-14 (work in progress),
 June 2012.

 [I-D.jennings-senml]
 Jennings, C., Shelby, Z., and J. Arkko, "Media Types for
 Sensor Markup Language (SENML)", draft-jennings-senml-09
 (work in progress), July 2012.

 [I-D.shelby-core-interfaces]
 Shelby, Z. and M. Vial, "CoRE Interfaces",
 draft-shelby-core-interfaces-03 (work in progress),
 July 2012.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

8.2. Informative References

 [I-D.shelby-core-resource-directory]
 Shelby, Z., Krco, S., and C. Bormann, "CoRE Resource
 Directory", draft-shelby-core-resource-directory-04 (work
 in progress), July 2012.

 [Page 18]

IPSO Draft The IPSO Application Framework August 2012

Authors' Addresses

 Zach Shelby
 Sensinode
 Kidekuja 2
 Vuokatti 88600
 FINLAND

 Phone: +358407796297
 Email: zach@sensinode.com

 Cedric Chauvenet
 Watteco
 1766, Chemin de la Planquette
 La Garde 83130
 France

 Phone:
 Email: c.chauvenet@watteco.com

 [Page 19]

