
 2003, Open Mobile Alliance, Ltd. All Rights Reserved. Terms and conditions of use are available from the Open
Mobile Alliance Web site (http://www.openmobilealliance.org/technical/copyright.htm).

Generic Content Download Over The Air Specification
Version 1.0

Version 21-Feb-2003

Open Mobile Alliance
OMA-Download-OTA-v1_0-20030221-C

A list of errata and updates to this document is available from the Open Mobile Alliance™ Web site,
http://www.openmobilealliance.org/, in the form of SIN documents, which are subject to revision or removal without notice.

.
A list of errata and updates to this document is available from the OMA™ Web site, http://www.openmobilealliance.org/, in
the form of SIN documents, which are subject to revision or removal without notice.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 2 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

© 2003, Open Mobile Alliance, Ltd. All rights reserved.

Terms and conditions of use are available from the Open Mobile Alliance Web site at
http://www.openmobilealliance.org/technical/copyright.htm).

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. You may not use this document in
any other manner without the prior written permission of the Open Mobile Alliance™. The Open Mobile Alliance
authorises you to copy this document, provided that you retain all copyright and other proprietary notices contained in
the original materials on any copies of the materials and that you comply strictly with these terms. This copyright
permission does not constitute an endorsement of the products or services offered by you.
The Open Mobile Alliance™ assumes no responsibility for errors or omissions in this document. In no event shall the
Open Mobile Alliance be liable for any special, indirect or consequential damages or any damages whatsoever arising
out of or in connection with the use of this information.

Open Mobile Alliance™ members have agreed to use reasonable endeavors to disclose in a timely manner to the Open
Mobile Alliance the existence of all intellectual property rights (IPR's) essential to the present document. However, the
members do not have an obligation to conduct IPR searches. The information received by the members is publicly
available to members and non-members of the Open Mobile Alliance and may be found on the “IPR Declarations” list
at http://www.openmobilealliance.org/ipr.asp. Essential IPR is available for license on the basis set out in the schedule
to the Open Mobile Alliance Application Form.
No representations or warranties (whether express or implied) are made by the Open Mobile Alliance™ or any Open
Mobile Alliance member or its affiliates regarding any of the IPR’s represented on this “IPR Declarations” list,
including, but not limited to the accuracy, completeness, validity or relevance of the information or whether or not such
rights are essential or non-essential.

This document is available online in PDF format at http://www.openmobilealliance.org/.

Known problems associated with this document are published at http://www.openmobilealliance.org/.

Comments regarding this document can be submitted to the Open Mobile Alliance™ in the manner published at
http://www.openmobilealliance.org/technical.htm.

Document History
OMA-Download-OTA-v1_0-20030221-C Current
OMA-Download-OTA-v1_0-20021219-c TP approved
OMA-Download-OTA-v1_0-20021205-c Class 2

Changes
submitted for
TP approval

OMA-Download-OTA-v1_0-20020912-c Initial
Candidate

OMA-Download-OTA-v1_0-20020912-p Proposed

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 3 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

Contents
1. SCOPE.. 5

2. REFERENCES ... 6

2.1. NORMATIVE REFERENCES .. 6
2.2. INFORMATIVE REFERENCES .. 6

3. TERMINOLOGY AND CONVENTIONS... 7

3.1. CONVENTIONS ... 7
3.2. DEFINITIONS .. 7
3.3. ABBREVIATIONS .. 8
3.4. ACKNOWLEDGEMENTS .. 9

4. INTRODUCTION...10
4.1. GOAL ...10
4.2. ARCHITECTURE...10
4.3. OVERVIEW ..10

4.3.1. OMA Download..11

5. OMA DOWNLOAD PROCESS..16
5.1. OBJECT DISCOVERY PROCESS...16

5.1.1. Step 1; The Download Descriptor is transferred to the device ...16
5.2. OBJECT INSTALLATION PROCESS ...17

5.2.1. Step 2; The Downloading Agent is launched, the Download Descriptor is processed ..18
5.2.2. Step 3; Capabilities Check...19
5.2.3. Step 4; User Confirmation...19
5.2.4. Step 5; Object retrieval...20
5.2.5. Step 6; Installation..20
5.2.6. Step 7; Sending Installation Notification..22
5.2.7. Step 8; Download Confirmation and next step..23

5.3. STATUS REPORT FUNCTIONALITY ..23
5.3.1. Status Report Formatting...24

5.4. LOCAL CONTENT PRESENTATION ..24
5.5. PERSISTENCE OF DOWNLOAD DESCRIPTOR ATTRIBUTES ...24
5.6. HTTP SPECIFIC FUNCTIONALITY...24

5.6.1. Client capability advertisement..24
5.6.2. Authentication of user..24
5.6.3. State Management of download transaction..24
5.6.4. Transparency of Download Descriptor mechanism..25

6. DOWNLOAD DESCRIPTOR...26

6.1. DOWNLOAD DESCRIPTOR...26
6.2. DOWNLOAD DESCRIPTOR ATTRIBUTES ...26

6.2.1. type..27
6.2.2. size ...27
6.2.3. objectURI...27
6.2.4. installNotifyURI..28
6.2.5. nextURL...28
6.2.6. DDVersion...29
6.2.7. name ..29
6.2.8. description..29
6.2.9. vendor...30
6.2.10. infoURL..30
6.2.11. iconURI ..30
6.2.12. installParam..31

6.3. EXTENSIBILITY ..31
6.3.1. Media type with custom installation commands...31

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 4 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

7. RELATIONSHIP TO JAVATM MIDP OTA (INFORMATIVE)...32

7.1. MIDP OTA AND OMA DOWNLOAD..32
8. XML SYNTAX FOR DOWNLOAD DESCRIPTOR..33

8.1. EXAMPLE...33
8.2. XML SCHEMA...33

APPENDIX A. EXAMPLE OF DOWNLOAD TRANSACTION (INFORMATIVE)...35

APPENDIX B. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE)..37

APPENDIX C. CHANGE HISTORY (INFORMATIVE)..39

APPENDIX D. MEDIA TYPE REGISTRATION...40

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 5 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

1. Scope
Open Mobile Alliance (OMA) Wireless Application Protocol (WAP) is a result of continuous work to define an
industry-wide specification for developing applications that operate over wireless communication networks. The scope
for the Open Mobile Alliance is to define a set of specifications to be used by service applications. The wireless market
is growing very quickly and reaching new customers and services. To enable operators and manufacturers to meet the
challenges in advanced services, differentiation, and fast and flexible service creation, WAP defines a set of protocols in
transport, session, and application layers. For additional information on the WAP architecture, refer to [WAPARCH].

This specification defines application-level protocols and behaviours needed to provide both powerful as well as
reliable content download functionality. It is anticipated that this will be an enabler for billing, and thus make premium
priced content available to mobile users.

The specification addresses requirements such as Content Discovery, Authentication, Delivery Negotiation, Content
Delivery and Delivery Confirmation. It takes advantage of work that has been done in the above-mentioned areas in
both the Open Mobile Alliance as well as in the Java Community Process (sm).

The technology defined in this specification provides a consistent download interface and functionality for all generic
content types, to complement the download of JavaTM applications that has been defined in [MIDPOTA].

The intended audience of this specification are implementers of Download Agents and download servers, as well as
other people who have some in-depth interest in the download procedures. It is not intended to be a tutorial for
application authors.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 6 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

2. References

2.1. Normative References
[CREQ] “Specification of WAP Conformance Requirements”. WAP Forum. WAP-221-CREQ,

http//www.openmobilealliance.org/

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
http://www.ietf.org/rfc/rfc2119.txt

[HTTPSM] “HTTP State Management Specification “, WAP Forum , WAP-223-HTTPSM,
http://www.openmobilealliance.org/

[RFC2046] Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, http://www.ietf.org

[RFC2387] “The MIME Multipart/Related Content-type”, E. Levinson, 1998, http://www.ietf.org/

[RFC2616] "Hypertext Transfer Protocol - HTTP/1.1", RFC 2616, R. Fielding, et al., June 1999.
http://www.ieft.org/rfc/rfc2616.txt

[WSP] " Wireless Session Protocol ", WAP-230-WSP, WAP Forum,
http://www.openmobilealliance.org/

[W-HTTP] " Wireless Profiled HTTP”, WAP-229-HTTP, WAP Forum,
http://www.openmobilealliance.org/

[WTLS] “Wireless Transport Layer Security”, WAP-261-WTLS, WAP Forum,
http://www.openmobilealliance.org/

[WAPTLS] “WAP TLS Profile and Tunneling”, WAP-219-TLS, WAP Forum,
http://www.openmobilealliance.org/

[XML] “Extensible Markup Language (XML) 1.0 (Second Edition)”, W3C Recommendation, Tim Bray
et al., 6 October 2000. http://www.w3.org/TR/2000/REC-xml-20001006

[XMLNS] “Namespaces in XML”, W3C Recommendation, Tim Bray et al., 14 January 1999.
http://www.w3.org/TR/1999/REC-xml-names-19990114/

[XMLSchema1] “XML Schema Part 1: Structures”, W3C Recommendation, Henry S. Thompson et al., 2 May
2001. http://www.w3.org/TR/xmlschema-1/

[XMLSchema2] “XML Schema Part 2: Datatypes”, W3C Recommendation, Paul V. Biron et al., 2 May 2001.
http://www.w3.org/TR/xmlschema-2/

2.2. Informative References
[WAPARCH] “WAP Architecture”. WAP Forum. WAP-210-WAPARCH.

http//www.openmobilealliance.org/

[MIDPOTA] “Over The Air User Initiated Provisioning Recommended Practice”, version 1.0, 2001, SUN
Microsystems. http://java.sun.com

[MIDP] “Mobile Information Device Profile”, version 1.0, 2000, SUN Microsystems,
http://java.sun.com/

[RFC2617] “HTTP Authentication, basic and digest authentication mechanisms”, RFC 2617,
http://www.ietf.org/

[UAProf] “User Agent Profile”, Open Mobile AllianceTM. OMA-WAP-UAProf-v1_1.
http://www.openmobilealliance.org/

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 7 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

3. Terminology and Conventions

3.1. Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections, except appendices, “Scope”, and “Introduction” are normative, unless they are explicitly indicated to be
informative.

3.2. Definitions
Content Delivery The actual delivery of the media object, for example by means of a HTTP GET, to the

client device.

Content Download The whole transaction including discovery, delivery of content and confirmation of
download.

Content Handler An entity in the mobile device responsible for the processing of a particular media
type. The content handler typically handles issues related to installation of content, in
addition to execution of content. The actual processing of retrieved content is outside
the scope of this specification.

Content Storage The physical location of the media object to be downloaded.

Discovery Application A user agent in the device that discovers media on behalf of the user. The End User
discovers content on the Web by using a Web browser or an application specifically
created for a type of content. A picture editor may discover pictures, a melody
composer may discover melodies, and an application manager may discover
applications (e.g. games) on dedicated Web sites. Email and MMS messages may
contain Web addresses to media objects available for downloading. These types of
applications are collectively referred to as a Discovery Application.

Discovery Process The process by which the user or device finds a resource (i.e. a Media Object) that he
wants to load onto his device. The discovery can take place for example by means of a
browser, a dedicated discovery application, a received message, or some offline
means (like a newspaper).

Download Agent An abbreviated form of Download User Agent.

Download Descriptor Metadata about a media object and instructions to the download agent for how to
download it. The object triggers the Download Agent in the client device. It describes
the media object to be downloaded and allows the client device to decide if it has the
capabilities to install and render/execute the Media Object.

Download Protocol The actual delivery of an object is performed using the protocol specified in the
Download Descriptor. The only mandatory protocol as defined in this specification is
[W-HTTP] (or [WSP] if the environment is WAP 1.x). Other protocols, including full
support for HTTP, may be used if supported by both parties.

Download Server A Web server hosting media objects available for download. It is responsible for the
download transaction from the server perspective. It handles download session
management including actions triggered by the installation status report.

Download Service The overall service that a client device is exposed to when it wants to select a media
object and execute a download of it. A download service is typically constructed with

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 8 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

the help of the abstract building blocks Presentation Server, Download Server and
Content Storage.

Download User Agent A user agent in the device responsible for downloading a media object described by a
downloaddescriptor. Responsible for the download transaction from the client
perspective. It is triggered by the reception or activation of a Download Descriptor.

Generic Content The concept of Generic Content includes any MIME media type except the JavaTM

JAR media type. For this media type please see [MIDPOTA].

Installation Notification A Status Report message from the client to the server. It indicates to the server that
the Download Agent has successfully installed the Media Object, and that the content
(to the best knowledge of the Download Agent) will be made available to the user.

Media Object A resource on a Web server that can be downloaded. It may be a single object (often
referred to as a file), or a container consisting of multiple objects. The mechanism for
the latter may be MIME-multipart. There are no restrictions as to the characteristics of
the media object, but the transfer encoding has to make it compatible with an HTTP
(or WSP) transport. The download of a Media Object is the ultimate goal of each
transaction undertaken with the protocol defined in this specification.

Media Object Installer The Media Object Installer is responsible for the preparation for and execution of the
installation of a particular media object. The Installer is often implemented as part of
the Content Handler of the particular media type or as part of a file system manager.

Media Type A MIME media type [RFC2046].

MIDP OTA Provisioning The JAVA TM MIDP OTA Provisioning is defined in [MIDPOTA].

Presentation Server A Web server presenting a download service to the user. It is one of the possible
discovery mechanisms. The client device may browse a Web or WAP page at the
presentation server and be redirected to the Download Server for the OMA Download
transaction.

Server All Servers in this specification are abstract, i.e. logical, entities. They are used in the
specification only to help the reader to separate between different functional elements
that may be implemented and deployed in any configuration.

Status Report A message sent from the mobile device to a server to indicate the positive or negative
outcome of a download transaction. In the context of Content Download the Status
Report terminates the "download session" (or "download transaction").

Status Report Server A WEB server accepting status reports from the download agent.

Well-intentioned attempt A “well-intentioned attempt to send an Installation Status Report” means that the
client device sends a Status Report under circumstances where the network
connection is known (to the extent possible) to be present, and the Status Report is
known to be properly formatted. If there is no network connection then an attempt to
send a request should not be regarded as well-intentioned.

3.3. Abbreviations
CID Content Identifier
DD Download Descriptor
HTTP HyperText Transfer Protocol
JAD JavaTM Application Descriptor

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 9 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

JAR JavaTM Archive
J2ME JavaTM 2 Micro Edition
MIDP Mobile Information Device Profile
MMS Multimedia Messaging Service
OMA Open Mobile Alliance
OTA Over The Air
RP Recommended Practices
URL Universal Resource Locator
URI Universal Resource Identifier
WAP Wireless Application Protocol
XML Extensible Markup Language

3.4. Acknowledgements
Sun, Sun Microsystems, the Sun Logo, Java, J2ME are trademarks or registered trademarks of Sun Microsystems, Inc.
in the United States and other countries.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 10 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

4. Introduction
The mobile industry is on the verge of introducing large-scale Internet style, media type independent, download of
media objects. One of the areas of deployment for this technology is e-commerce. The most likely objects to kick off
the business are Ringing Tones, Screen Savers and JavaTM MIDlets.

4.1. Goal
The goal of this specification is to define a technology for confirmed download that is used to deliver digital content
such as entertainment and business applications as well as objects to be rendered to mobile terminals. Another
important application area for download is to personalise terminals according to a user’s preferences and lifestyle. Some
of the specific goals include

• Enable various payment models to support launch of e-commerce concepts.

• Avoid fragmentation of content space. Content for mobile devices with different capabilities can be published
using a consistent concept.

• Create commonality between the download process of all types of media: e.g. games, melodies, and pictures.

• Enable both automated as well as manual client driven capability negotiation

• Enable a mechanism that allows the initial download solution to be extended with new attributes and functionality

• Create a solution that is quick and easy to implement and deploy in order to make time to market short

4.2. Architecture
The fundamental architectural vision behind this specification is the logical separation of presentation (content) server,
download server and content storage. This architecture allows for very simple presentation servers, with no special
functionality to enable e-commerce. The e-commerce and download management functionality can instead be
concentrated into the Download Server.

This architecture explicitly allows for both centralized deployment, where there is a strong association between
presentation server and download server, as well as decentralized deployment where there is a relatively low level of
integration between presentation and download servers.

The functionality enables the implementation of confirmed and reliable, and thus billable, transactions between a server
entity (Presentation Server, Download Server) and a client device. The functionality allows any type of content to be
downloaded.

4.3. Overview
The mechanisms for media object download defined in this specification support at least two high-level commercial use
cases:

• A pay-per-transaction model where the confirmation of a successful installation of a media object typically triggers
server side billing actions.

• A subscription model that does not require explicit confirmation of individual succeeded download operations. In
this case of commercial service the service provider typically makes a separate agreement with an end user to
download multiple media objects at the end users convenience.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 11 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

4.3.1. OMA Download

The OMA Download model leverages the HTTP download mechanisms, and adds a number of features as defined in
this specification. These include additional tools for content negotiation, well-formalised (protocol independent)
META-data presentation and application layer confirmation of installation.

The negotiation model allows both the client device and the end user to evaluate if a download is to proceed to the
phase where a data object it transferred to the device. Some of the attributes of the Download Descriptor allow the
download agent to compare the currently available resources on the client device to the META-data representing the
media object to be downloaded. Another set of attributes allow the end user to evaluate if the media object is
worthwhile for him, if he wants to complete the transaction or abort before the media object has been transferred.

A download transaction always includes a degree of uncertainty, the client and the server cannot simultaneously know
with absolute certainty that a transaction has succeeded, and that the other party is in agreement with this deduction.
The logic of the OMA Download Installation Notification has been defined in such a way that the client has a slight
advantage. There may be situations where the server does not know that the client has accepted the media object, but
there is no situation where the server would believe that the client device has accepted the media object when it in fact
has been rejected.

The generic OMA Download, based on the concept of a Download Descriptor, includes two basic scenarios:

• OMA Download with Separate Delivery of Download Descriptor and Media Object.

• The Download Descriptor, which contains META-data related to the download transaction, is typically
delivered separately from the media object it references.

• OMA Download with Co-Delivery of Download Descriptor and Media Object

• In some cases it may be beneficial to combine the Download Descriptor and the media object in one delivery
package.

In the two scenarios there may or may not be an installation notification, depending on what was requested in the
Download Descriptor.

These main OMA Download scenarios are briefly described below.

OMA Download with Separate Delivery of Download Descriptor and Media Object

This download scenario is a process that includes separate request-reply interaction pairs for Download Descriptor
delivery, content delivery and the optional application level transaction confirmation.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 12 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

2

1

3

4

• 1: Client finds a markup page that exposes an
attractive service
• 2: Client selects a URI that points to a Download
Descriptor in a Download Server

• The Download Descriptor is delivered to
client. The Download Descriptor includes a
URI that references the Media Object

• 3: Client retrieves the Media Object file from the
Download Server
• 4: Client reports the status of the download
transaction to the Download Server

Optional WAP GW
or HTTP Proxy

Download
Server

Content
Storage

Presentation
Server

MS

Media Object

 META information (Download Descriptor)
Install-Notify

Discovery Doc (XHTML, URL)

Status
Report
 Server

<name> splash </name>
<objectURI> http://a.b.c/s?id=45
 </objectURI>
<size> 1780 <s/ize>
<type> image/GIF </type>
<installNotifyURI>http://a.b.c/in?id=45
 </installNotifyURI>

Figure 1. The full generic content download process, with separate transfer of Download Descriptor and media
object. This download process can be truncated in situations where no InstallNotifyURI has been defined.

OMA Download with Co-Delivery of Download Descriptor and Media Object

This download scenario is a process where the Download Descriptor is delivered together with the Media Object within
a single request-reply interaction. This delivery is then followed by optional application level transaction confirmation.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 13 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

2

1

3

• 1: Client finds a markup page that exposes an
attractive service
• 2: Client selects a URI that points to a Download
Descriptor in the Download Server

• The Download Descriptor is delivered to the
client. The Download Descriptor includes a
URI referencing the Media Object
• The Media Object is delivered from the
Download Server

• 3: Client reports the status of download transaction
to the Download Server

Optional WAP GW
or HTTP Proxy

Download
Server

Content
Storage

Presentation
Server

MS

Media Object

META information (Download Descriptor)
Install-Notify

Discovery Doc (XHTML, URL)

<name> splash </name>
<objectURI> http://a.b.c/s?id=45
 </objectURI>
<size> 1780 <s/ize>
<type> image/GIF </type>
<installNotifyURI>http://a.b.c/in?id=45
 </installNotifyURI>

Status
Report
 Server

Figure 2. The shortcut of the most elaborate download process with a combined delivery of Download Descriptor
and Media Object. This download process can be truncated in situations where no InstallNotifyURI has been
defined.

OMA DOWNLOAD without Installation Notification

This download scenario illustrates the case when an Installation Notification is not used to provide confirmation to the
server about the successful media object installation. The advantage of this scenario is that one request-reply pair can be
omitted from the process if the use case does not require application level transaction confirmation.

This scenario represents an unreliable download mechanism (similar to an HTTP retrieval of content) particularly
suitable for use cases where absolute reliability is less of a priority than bandwidth optimisation.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 14 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

2

1

3

• 1: Client finds a markup page that exposes an
attractive service
• 2: Client selects a URI that points to a Download
Descriptor in a Download Server

• The Download Descriptor is delivered to the
client. The Download Descriptor includes a
URI that references the Media Object

• 3: Client retrieves the Media Object file from the
Download Server

Optional WAP GW
or HTTP Proxy

Download
Server

Content
Storage

name: splash
URL: http:a.b.c/s?id=45
Size: 1780
type: image/GIF

Presentation
Server

MS

Media Object

META information (Download Descriptor)
Install-Notify

Discovery Doc (XHTML, URL)

<name> splash </name>
<objectURI > http://a.b.c/s?id=45
 </objectURI>
<size> 1780 <s/ize>
<type> image/GIF </type>

Figure 3. The download process is significantly simplified in the case that no Installation Notification is required.
The over the air traffic is then reduced by one request-reply interaction.

Service flow in a browsing environment

Each of the download scenarios above can be combined with the mechanism for application flow control defined in this
specification. The flow control mechanism provides the service creator with a tool that allows him to advise the client
device about the next URL to access in case the end user decides to continue with a browsing interaction.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 15 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

Presentation

Server (WEB)

Download Server

MS

The client finds a
content object on

the presentation server
and starts the download

The download server
 makes a best effort to

execute the requested
 download

The download
unfortunately failed,
failure mgmt next...

Download
succeeded
, Continue!

Go with content?

Browser Browser ContentHandler

Figure 4. Basic WEB/WAP service user experience flow control.

The control flow mechanism covers the basic use case for context management where the end user selects to continue
with a browsing operation after the completion of the download transaction. The mechanism can be used both in the
situation where the download was completed successfully and in the situation where it was terminated with some kind
of a failure.

The case when the end user after the download selects to perform some other action, like render the downloaded media
object, is outside the scope of this specification.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 16 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

5. OMA DOWNLOAD Process
During the download and installation process the user SHOULD be given opportunities to control the download and to
determine object specific terms. For any operation, the user SHOULD be informed of progress and given an
opportunity to cancel the activity. The user interface of the device SHOULD allow the user to abort the download
operation at appropriate points during the download and installation process (i.e. before a well-intentioned attempt to
send an installation notification has been done).

When a Media Object is installed, and if an Installation Notification has been requested in the Download Descriptor, a
confirmation MUST be sent to the server to indicate that the installation has completed. If the Download Descriptor
does not include a request for an Installation Notification then no such confirmation will be sent.

If an InstallNotifyURI has been defined in the Download Descriptor, then errors during the download process MUST be
reported using the status report mechanism, The server may use the status report, communicating both success and
failure of the transaction, for accounting or for other customer service needs.

Download DescriptorEnd User Discovery
Application

Download
User Agent Media Object

Installation Notification

Mobile
Device

Server
back end

2. Launch

4. Validate with user

1. TransferUse

5. Retrieve

7. Send

3. Check

8. Download confirmation

6. Install

Figure 5. The picture describes the actions in the client device and the communication operations. These actions
are referenced in the sections “Object Discovery Process” and “Object Installation Process”.

5.1. Object Discovery Process
While using the Discovery Application, the user is typically presented with a reference to the Download Descriptor.
The reference may be on a Web page, or inside an email or MMS message, or stored in memory or in an accessory
attached to the phone.

5.1.1. Step 1; The Download Descriptor is transferred to the device
The transfer protocol used depends on the where the Download Descriptor is located and on the requirements of the
transfer.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 17 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

The Device hosting the Download Agent MUST at a minimum support either [W-HTTP] or [WSP], and MAY support
either [WAPTLS] or [WTLS], as well as other protocols. The Download Descriptor may be retrieved from the
download server, or the presentation server, depending on requirements of the deployment.

The device hosting the Download Agent MAY also support reception of the Download Descriptor using a mechanism
such as MMS, email or some instant messaging protocol.

The Content-Type parameter of the transport protocol or message container (or equivalent) MUST be used to detect the
Download Descriptor media type; a charset parameter MAY also be used to indicate the character set of the Download
Descriptor.

It is recommended that servers do not put multiple Download Descriptors into one and the same transport entity (e.g.
multipart/mixed). This would make transaction management, and interpretation of the multipart semantics,
unnecessarily complicated. The device MAY support this case, but is not required to.

For details on state management during the transaction see Section 5.6.3 State Management of Download Transactions.

For details related to authentication see Section 5.6.2 Authentication of User.

5.1.1.1. Co-Delivery of Download Descriptor and Media Object

When the Download Descriptor is delivered to the device the server system may select to deliver the media object in a
single delivery operation. This is described as a “Content Download transaction with co-delivery of Descriptor and
media object” in Section 4.3.1 OMA DOWNLOAD. If the device in the capability negotiation indicates that it supports
multipart/related ([RFC2387]) or application/vnd.wap.multipart.related ([WSP]) then it MUST be able to process such a
multipart with the Download Descriptor as the first part and the media object as the second part. The CID (Content ID)
mechanism MUST be used in the Download Descriptor to reference the media object in a related multipart.

When the Media Object is Co-Delivered with the Download Descriptor the process continues as described in Section
5.2 Object Installation Process, with the exception that the Media Object is retrieved locally (in “step 5”) rather than
from an external location. The same steps of “Launch of Download Agent”, “Capabilities check” and “User
Confirmation” are still performed.

If the download transaction because of some reason is aborted before step 6 (or optionally during step 7) then the Media
Object MUST be discarded from the device.

5.2. Object Installation process
Object installation is the process by which a Media Object is downloaded onto the device and made available for
execution or rendering.

To install a Media Object, the Download Agent that is responsible for the processing of the Download Descriptor
performs a number of actions, and SHOULD provide the user with appropriate feedback would one of the actions fail.
It MUST also use the Status Report mechanism (if requested in the Download Descriptor) to give the server
infrastructure feedback about a possible failure of the download event, and MUST use the mechanism to report on a
successful installation.

The Status Report is used to give the server entities a crude understanding of the reasons for an unsuccessful download
operation. It is in many cases important feedback to a service to learn that a large number of devices reject the content,
or that a large number of users abort the download when presented with a formal description of the media object.

The Status Report MUST be sent to the address defined in the InstallNotifyURI attribute. If the InstallNotifyURI
attribute is missing from the Download Descriptor then no Status Report can be sent.

If the network service is lost during installation, an Error Code “Loss of Service” MUST be used in a Status Report if
possible (it may be impossible to deliver the status report due to the network-service outage).

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 18 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

Table 1. Installation status code and associated message

Status
Code

Status Message Informative description of Status Code usage

900 Success Indicates to the service that the media object was downloaded and installed
successfully.

901 Insufficient memory Indicates to the service that the device could not accept the media object as it
did not have enough storage space on the device. This event may occur before
or after the retrieval of the media object.

902 User Cancelled Indicates that the user does not want to go through with the download
operation. The event may occur after the analyses of the Download Descriptor,
or instead of the sending of the Installation Notification (i.e. the user cancelled
the download while the retrieval/installation of the media object was in
process).

903 Loss of Service Indicates that the client device lost network service while retrieving the Media
Object.

905 Attribute mismatch Indicates that the media object does not match the attributes defined in the
Download Descriptor, and that the device therefore rejects the media object.

906 Invalid descriptor Indicates that the device could not interpret the Download Descriptor. This
typically means a syntactic error.

951 Invalid DDVersion Indicates that the device was not compatible with the “major” version of the
Download Descriptor, as indicated in the attribute Version (that is a parameter
to the attribute Media).

952 Device Aborted Indicates that the device interrupted, or canceld, the retrieval of the media
object despite the fact that the content should have been executable on the
device. This is thus a different case from "Insufficient Memory" and "Non-
Acceptable Content" (where the device has concluded that it cannot use the
content).

953 Non-Acceptable
Content

Indicates that after the retrieval of the media object, but before sending the
installation notification, the Download Agent concluded that the device cannot
use the media object.

954 Loader Error Indicates that the URL that was to be used for the retrieval of the Media Object
did not provide access to the Media Object. This may represent for example
errors of type server down, incorrect URL and service errors.

5.2.1. Step 2; The Downloading Agent is launched, the Download Descriptor
is processed

The Download Agent is launched.

The Download Descriptor MUST be processed according to the rules defined in Section 5.2.1.1 Processing Rules. If the
Download Descriptor is in error (e.g. a syntax error), an error message SHOULD be displayed to the user. If the
InstallNotifyURL is defined then the Download Agent MUST post an “Invalid Descriptor” status report.

If the Version attribute of the Download Descriptor indicates a “major” version that is not supported by the client
device it MUST send an “Invalid DDVersion” status code to the InstallNotifyURI and reject the Download Descriptor.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 19 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

If an error occurs the scenario stops at this point.

5.2.1.1. Processing Rules

This specification strives to ensure forward compatibility. The parsing and processing of first generation device
implementations should not become incompatible as additional attributes are deployed. Thus, when processing the
Download Descriptor, the following rules apply:

• Optional attributes, as defined in this specification, MUST be ignored if not supported.

• Unknown attributes MUST be ignored (these attributes MAY be defined outside this specification).

• If an attribute occurs more than once, all but the first occurrence MUST be ignored.

• The only exception to this rule is the attribute Type that has well defined semantics when it occurs multiple
times. If there are more occurrences of an attribute than the Download Agent can support then the Download
Agent SHOULD accept as many attributes as it supports and after that ignore all subsequent attribute values as
redundant (i.e. in case of multiple occurrences of an attribute the first one has the highest priority).

5.2.2. Step 3; Capabilities Check
The Download Agent MUST use the information in the descriptor, at a minimum size and type, to check whether the
device is capable of using and/or rendering the media object. This is to prevent downloading of media objects that will
not work properly.

If the device does not have sufficient memory for installing and storing the media object, the Downloading Agent
SHOULD aid the user in reviewing memory usage and freeing sufficient memory for installation of the new media
object. If there after this event is insufficient memory to store the media object on the device, the Download Agent
MUST post an “Insufficient Memory” status report and notify the end user.

If the device based on the attributes in the Download Descriptor concludes that it lacks the capability, due to a reason
different from insufficient memory, to perform a successful installation of the media object the Download Agent
SHOULD notify the end user and MUST post a “Device Aborted” status report.

If there is more than one Type attribute in the Download Descriptor then the device MAY continue with the download
transaction even if not all media types defined in the Type attribute are supported by the device.

5.2.3. Step 4; User Confirmation
Using the information in the Download Descriptor the user SHOULD be given a chance to confirm that they want to
install the media object.

The following information SHOULD, if available, be made available to the user:

• Name

• Vendor

• Size

• Type

• Description

The user SHOULD be prompted for confirmation if one or more types are not supported. If the user does not approve
the downloading, the Download Agent MUST post an “User Cancelled” status report.

The Type attribute may occur multiple times in the Download Descriptor. It then indicates that the device is
recommended to support all the listed media types in order to use the complete downloaded media object. In this case

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 20 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

the Download Agent should interpret the attributes in order of decreasing importance to the user, i.e. that first type
attribute has the highest relevance for presentation to the end user (it would typically be the, one or more, most
important media types to be rendered or executed). In case of use of packaging or wrappers the first, one or more, type
attributes would represent the innermost media objects.

5.2.4. Step 5; Object retrieval
The retrieval of the media object is typically performed using HTTP (or HTTPS) but always according to the scheme in
the ObjectURI attribute of the Download Descriptor. The Download Agent MUST support the HTTP scheme, and
MAY support the HTTPS scheme. The Download Agent MUST at a minimum support either [W-HTTP] or [WSP], and
MAY support either [WAPTLS] or [WTLS], as well as other optional protocols. For more details on specifics on the
use of HTTP see section HTTP Specific Functionality.

The request for the Media Object MUST be for exactly the URI specified in the descriptor, but the request MAY
include additional headers created by the Download Agent.

The mechanics of this action is explained more in detail in specifications covering [W-HTTP] and [WSP].

If the object does not exist then the Download Agent MUST post a “Loader Error” status report.

If the connection with the network is lost during the retrieval of the media object the Download Agent MUST post a
“Loss of Service” status report.

If the user aborts the retrieval of the media object then the Download Agent MUST post a “User Cancelled” status
report.

5.2.5. Step 6; Installation
The installation is a media type specific, and implementation specific, mechanism to prepare a media object for
rendering/execution on the device.

The functionality of this step “Installation” depends on if the Installation Notification has been requested in the
Download Descriptor or not.

Installation Notification NOT requested

In case an Installation Notification has not been requested the download use case is terminated when the installation has
completed. The media object can now be rendered or executed.

Installation Notification requested

In case an Installation Notification has been requested in the Download Descriptor by means of the InstallNotifyURI
attribute, then the installation process is split into two phases.

• The first phase (covered as step 6 in this specification) consists of a pre-installation where the device prepares the
media object for rendering/execution to the largest extent possible without actually allowing it to be used.

• The second phase is dependant on the success of the next step (covered as step 7 in this specification), the
execution of the Installation Notification. Only if that step is regarded as successful the media object will be made
available for execution/rendering.

These two phases are valid also in case the Download Descriptor and the Media Object are co-delivered to the device.

Installation is complete when the Media Object has been prepared for execution/rendering on the device, or an
unrecoverable failure has occurred. In either case, the status MUST be reported (assuming the installation notification
has been requested as indicated by the InstallNotifyURI) as described in the Section Status Report Functionality.

• If the installation succeeded the device MUST generate the status code “Success” in the Status Report as described
in Section 5.2.6 “Step 7, Sending Installation Notification”.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 21 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

• If the user canceled the downloading and installation before the installation completed (the sending of the
installation notification was done) the device MUST generate the status code “User Cancelled” in the Status
Report.

• If the installation of the software failed due to lack of memory then the device MUST generate the status code
“Insufficient Memory” in the Status Report.

• If the installation of the software failed due to some other reason, independent of the end user, than lack of memory
then the device MUST generate the status code “Device Aborted”

• If the Downloading User Agent immediately rejected the Media Object because it had characteristics that made it
impossible to execute or render on the device then the device MUST generate the status code “Non-Acceptable
Content” in the Status Report.

• If the Downloading User Agent could not install the media object because the retrieved object conflicted in a non-
recoverable way with the attributes defined in the Download Descriptor then the device MUST generate the status
code “Attribute Mismatch”.

In all cases where a Status Report indicating an error is issued the Media Object MUST be discarded by the device. The
logic of OMA Download is such that a failure remains a failure even if the status report could not be sent successfully.
That is, from the server perspective a missing status report equals an error status code.

Content
handler X

Client Server

Browser

Download
Agent

Download
Descriptor

presented for
retrieval

Transaction
UI

Content
handler UI

Content
processing logic

Media object
presented for

retrieval

Installation
Notification sent to

server

A success code in the Installation
Notification indicates only that the media
object has been successfully loaded onto

the device, and handed over to the
appropriate content handler

Figure 6. The successful completion of the download transaction is independent of the content handler that will
finalize the processing of the retrieved media type. However, the Download Agent and the approriate content

handler may negotiate during the transaction about the device capabilities to process the content.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 22 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

5.2.5.1. Media Object installation parameter

The attribute installParam MAY be used to convey parameters to the Media Type specific Media Object Installer. If an
installParam exists then the Download Agent MUST convey the value of the installParam to the Media Object Installer.

If the Media Object installer does not support the installation parameter, the installation parameter must be ignored. If
the Media Object installer does support the installation parameter, but there is an error in the parameter, then an error
code (“attribute mismatch”) SHOULD be returned as defined in section 5.2.5.

If the Media Object is a Composite Object then the installParam parameter is conveyed by the Download Agent to the
Media Object Installer of the composite object. The use of the value of this parameter is specific to the Media Object
Installer and outside the scope of this specification.

5.2.6. Step 7; Sending Installation Notification
This step, the sending of the Installation Notification, is valid only in the cases where it has been explicitly requested
through the use of the attribute InstallNotifyURI in the Download Descriptor.

The purpose of the Status Report mechanism is to provide the download server with an indication that the Media Object
has been properly received and installed. This functionality is available as the success or failure of the installation of a
Media Object may be critical to execute certain business models within the content service realm.

The installation status is reported by the use of the schema defined in the InstallNotifyURI attribute. The Download
Agent MUST at a minimum support either [W-HTTP] or [WSP] protocols. If the scheme is HTTP then an HTTP POST
request to the defined URL is performed. The HTTP schemeMUST be supported. However, if the transfer of the Media
Object has been performed using a different scheme than HTTP then the Download Agent MUST be able to execute
also the installation notification using this same scheme.

In case the defined scheme of the Installation Notification is HTTP or HTTPS then the content of the body of the POST
request MUST include on the first line a status code and status message. The table “Installation Status Code and
Associated Message” in Section 5.2 lists the valid status message codes and messages. The Section 5.3.1 defines the
format of the installation notification.

The Media Object MUST NOT be released for use at the device unless the sending of the installation notification
succeeds (in case the InstallNotifyURI has been defined in the Download Descriptor).

The sending of the Installation Notification is regarded as successful if the Download Agent receives a reply from the
server with any 200-series response code. All other HTTP-response codes (100-, 300-, 400- and 500-series HTTP-
response codes) MUST be handled as either temporary or permanent errors. The Download Agent MUST implement
the behaviour associated with response codes representing temporary errors (for example “401” and “407”) as defined
in [RFC2616].

The exception to the logic defined above is the semantics of a “Well-Intentioned Attempt”. If the well-intentioned
Installation Notification attempt brings no response from the server then the Download Agent MUST equal the situation
to the reception of a 200-series response code. This may for example occur in the situation when the Download Agent
experiences a timeout before the response is received. The time to wait for the HTTP-Reply is implementation specific.

No content body should be returned in the HTTP reply to the device and, if any is sent, the Download Agent MUST
ignore the body part. If a request brings no response, the request MAY be retried, but it SHOULD NOT be retried if any
response is received (except in case, e.g. “401 unauthorised”, the reply prompts a modified retry).

If no well-intentioned attempt can be made then the device MUST NOT allow for the use of the media object. The
device MUST indicate to the user that the download failed and remove the content from the device.

5.2.6.1. Installation Notification semantics

An important aspect of the Installation Notification mechanism in the Download Descriptor is to prevent a situation
where the server has “knowledge” that the transaction completed, but the client perceives the transaction as failed (and

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 23 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

doesn’t release the Media Object for use in the device). This logic has to function properly also in situations where a
proxy separates the Download Agent and the download server.

The implementation of the Download Agent in the device MUST make at least one well-intentioned attempt to send the
Installation Notification to the address defined in the InstallNotifyURI attribute. By “well-intentioned” is meant an
attempt where the network connection is known (to the extent possible) to be present. If such “well-intentioned” attempt
cannot be made, despite multiple retries, then the media object MUST immediately be removed from the device.

5.2.7. Step 8; Download Confirmation and next step

When the device has sent the status report, as described in step 7 above, or the transaction has completed without a
Status Report (if no status report was requested in the download descriptor) then the Download Agent SHOULD
indicate the result of the transaction to the user.

The download transaction may have ended successfully, or failed at any step of the download process. In both these
cases the Download Agent SHOULD present the user with the option of either continue with a local context specific
operation (often to render of execute the media object) or to continue with a browsing operation.

If the end user selects to continue with a browsing operation then the Download Agent SHOULD invoke the URL
defined in the NextURL attribute. The flow control functionality implemented using NextURL may link to any resource
either in the download server (that may issue a context sensitive redirection), in the presentation server, or somewhere
else.

A context sensitive redirection provides an opportunity for a late binding for the control flow. This may be particularly
important for error situations, to allow the presentation server to optimise its response based on the type of error that
occurred.

If the NextURL attribute is missing from the Download Descriptor then the Download Agent SHOULD offer the user
an opportunity to continue with a local operation, and MAY offer the user an opportunity to continue with a browsing
operation. In the case the end user selects to continue with a browsing operation the URL to be activated is
implementation specific.

5.3. Status Report Functionality
The Status Report functionality in OMA Download covers reporting both successful (Installation Notification) as well
as failed content download transactions.

The confirmation of a successful download operation (installation notification) is particularly useful in deployments
where some kind of pay-per-transaction business model is used. The Status Report can also be used to optimise the
allocation of server resources.

However, it should be noted that a server cannot ever fully rely on the reception of a Status Report to indicate a
completed transaction. The device may be unable to send the status report. The server thus anyhow needs to have a
robust logic to discard hanging transactions.

There are two major usage scenarios with respect to status reports:

• The Download Service wants installation notification as well as error codes if something fails in the transaction.
This kind of functionality would typically be deployed in a pay per download environment (= FULL STATUS
REPORTS).

• The Download Service wants neither error codes nor installation confirmation, and leverages only the metadata and
capability negotiation features of the Download Descriptor (= NO STATUS REPORT).

The Status Report functionality described in the use cases above is implemented using the InstallNotifyURI attribute. If
present, then the usage scenario FULL STATUS REPORTS is implemented as described above. If missing, then no
status reports can be sent, and the usage scenario NO STATUS REPORT is implemented.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 24 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

5.3.1. Status Report Formatting

The Status Report MUST contain the Status Code in a decimal format, followed by one or more <space> characters,
followed by the textual representation of the error code (which MAY be followed by a <newline> characters).

5.4. Local Content Presentation
The user experience can often be enhanced if the user interface is graphical rather than text based. The optional
IconURI provides a facility to define an icon that can be used to represent the object on the screen of the device.

If present in the Download Descriptor the URI should contain a reference to a small graphical object. The means,
including capability negotiation facilities, to download the graphical object are defined in the scheme of the attribute
IconURI.

The support for IconURI is optional in both the Download Descriptor as well as in the Download Agent. The Download
Agent SHOULD retrieve and use the specified icon.

5.5. Persistence of Download Descriptor attributes
The Download Agent MAY use the attributes received in the Download Descriptor in association with the Media
Object at its discretion. Some of the attributes MAY be stored persistently in conjunction with the installation of the
media object.

5.6. HTTP Specific Functionality

5.6.1. Client capability advertisement
When a download operation over HTTP or HTTPS is to take place the device should advertise its capabilities (to the
extent possible) by using the mechanism of HTTP request headers. Headers that SHOULD be included are Accept
headers (at least Accept-Content) and User-Agent or UAProf.

The Server (or servers) supplying the Download Descriptor and the Media Object should use this information to select
the best possible set of content for the device.

5.6.2. Authentication of user
Authentication of the user is not mandatory, but often a useful feature. Authentication MAY be performed at different
levels of the protocol stack, but the HTTP basic authentication mechanism (as defined in RFC2617) MUST be
supported by the client device.

If the server responds to the request for the Download Descriptor, or the Media Object, with a 401 (Unauthorised), the
device MUST re-send the request (including potential cookies) with the user-supplied credentials in an Authorisation
header field as specified in RFC2617. The credentials should be provided by the user—for example, a common
mechanism would be to present a dialog to the user to enter a user name and password.

The network may also require proxy authentication. If a proxy responds to the request for the Download Descriptor, or
the Media Object, with a 407 (Proxy Authentication Required), the device SHOULD re-send the request with the user-
supplied credentials in a Proxy-Authorisation header field as specified in RFC2617.

5.6.3. State Management of download transaction

State Management in the download transaction can be handled using multiple different methods. The definition of these
methods is outside the scope of this specification. This section gives two examples of methods that MAY be supported
by a Download Agent.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 25 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

The state management is most relevant in a transaction that leverages the Installation Notification. In this case it is
important for the server to be able to associate the offer to download a media object (the download descriptor), the
actual retrieval of the media object, and the installation notification (the Status Report).

The first method is based on the URL’s that are exposed in the Download Descriptor. Each of the URL’s may have a
session identifier parameter that from the server point of view associates the operations with each other.

The second method is based on the use of cookies, as defined in [HTTPSM]. This method allows the server to issue a
cookie that will be associated with each subsequent operation within the download transaction.

5.6.4. Transparency of Download Descriptor mechanism
The intention of the Download Descriptor download transaction mechanism is that it is transparent, i.e. from the content
handler (i.e. GIF, JPEG, MIDI, etc.) point of view there should be no difference if the object was downloaded directly
using a plain HTTP request-response, or using the Download Descriptor mechanism. If the content handler, or the
system in general, can benefit from information conveyed in the HTTP headers, then these headers should be available
in a transparent manner.

The Download Descriptor transaction consists of three request-response pairs, all of them part of the transaction, and all
of them with associated HTTP headers. The Download Agent MUST make the headers associated with the actual
Media Object transfer available together with the Media Object. Headers associated with the two other (optional)
request-response operations SHOULD NOT be exposed to the Media Object specific content handler.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 26 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

6. Download Descriptor
The Download Descriptor is a collection of attributes, used to describe a media object at a URI or URL (as defined in
[RFC2396]). The defined attributes are specified to allow the Download Agent to identify, retrieve, and install media
objects. It may also be used by the application that is actually processing the media object (the Content Handler); the
Download Descriptor may contain media specific attributes.

This section defines only the semantics of the Download Descriptor. The syntax is described in a separate section.

6.1. Download Descriptor
The Download Descriptor is used by the Download Agent and by the content handler that ultimately processes the
Media Object. The Download Descriptor may for example include content handler specific attributes. The Download
Agent SHOULD expose the complete Download Descriptor to the content handler (at the request of the content handler.
The interface may be the same as for HTTP headers).

The descriptor allows the device to verify that the desired Media Object is suitable for the device before being loaded. It
also allows Media Object-specific attributes (parameters) to be supplied to the relevant content handler.

The client device MUST use the MIME media type declared by the transport or packaging mechanism to identify a
Download Descriptor object. The MIME media type is defined in Section 8 “XML Syntax for Download Descriptor”.

A predefined set of attributes is specified to allow the Download Agent software to identify, retrieve, and install Media
Objects. All attributes appearing in the Download Descriptor are made available to the content handler of the media
type that the Download Descriptor references.

6.2. Download Descriptor attributes
The attributes in the descriptor MUST be formatted according to the syntax defined in the syntax section of this
specification. If not, then an error code “Invalid Descriptor” MUST be returned in the status report. However, it will in
many cases be impossible to send the error code in case of a Download Descriptor that cannot be parsed properly due to
formatting errors.

Descriptors retrieved via HTTP, if that is supported, should use the standard HTTP content negotiation mechanisms,
such as the Content-Encoding header and the Content-Type charset parameter to decode the stream to the preferred
character set for the actual MIME media type representation of the Download Descriptor.

Each attribute is defined using the following properties:

Name - The name of the attribute

Definition - A statement that clearly represents the concept and essential nature of the attribute

Status - Whether the attribute is Mandatory – it MUST be included in a valid Download Descriptor - or Optional -
MAY be included in the Download Descriptor. The property also defines if support for the functionality is optional or
mandatory in the Download Agent.

Datatype - Indicates the type of data that can be represented in the value of the attribute

Refinement - A qualifier that makes the meaning of the attribute narrower or more specific

Comment - A remark concerning the application of the attribute

The attributes are defined in the following sections.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 27 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

6.2.1. type

Name type

Definition The MIME media type of the media object

Status Download Descriptor: Mandatory. User Agent: Mandatory

Datatype MIME Media type

Refinement -

Comment The type attribute indicates the media type of the object to be executed or rendered.
The type attribute may occur multiple times in case the client device needs to
support multiple media types in order to process a composite object or a packaging
mechanism. The value of the type attribute MAY be different from the media type
indicated in the HTTP header “content-type” as transport packaging MAY be used.

SHOULD be used by the client to evaluate its capabilities relative to the content to
be downloaded.

The type attribute is used to indicate to the client if the Media Object to be
downloaded has a media type that is supported by the client. If the type is not
supported then the client SHOULD abort the download transaction.

The device MUST support multiple occurrences of the type attribute in the
Download Descriptor.

6.2.2. size

Name size

Definition The number of bytes to be downloaded from the URI.

Status Download Descriptor: Mandatory. User Agent: Mandatory

Datatype Positive integer

Refinement -

Comment The storage size and the execution size are dependent on the environment and may
be different from the value of the size attribute.

The transport size may also be different, if compression or some packaging format
is used.

The size can be used to allocate sufficiently large data buffers for downloading in
the client.

6.2.3. objectURI

Name objectURI

Definition The URI (usually URL) from which the media object can be loaded.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 28 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

Status Download Descriptor: Mandatory. User Agent: Mandatory

Datatype URI

Refinement -

Comment The Download Agent MUST be able to use an HTTP GET to reference this URI in
order to retrieve the media object.

6.2.4. installNotifyURI

Name installNotifyURI

Definition The URI (or usually URL) to which a installation status report is to be sent, either
in case of a successful completion of the download, or in case of a failure.

Status Download Descriptor: Optional. User Agent: Mandatory

Datatype URI

Refinement -

Comment The installNotifyURI attribute is the enabler of controlled transactions.

If the attribute is defined then the Download Agent MUST send an installation
status report both in the case of success and any kind of failure. The status code is
as defined in table 1 (Section 5.2 Object Installation Process).

If the attribute is missing then no installation status report can be issued, neither for
success nor for failure.

The Download Agent posts a status-report to this URL. The URL is used both to
report errors and process aborts, as well as to verify the successful installation of
the media object.

6.2.5. nextURL

Name nextURL

Definition The URL to which the client should navigate in case the end user selects to invoke
a browsing action after the download transaction has completed with either a
success or a failure.

Status Download Descriptor: Optional. User Agent: Optional

Datatype A RFC2396 URL

Refinement -

Comment NextURL provides a way for the download service to express the desired terminal
behaviour in scenarios where the service to user interaction is to continue with
browsing actions.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 29 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

This feature MAY for example be used when the Discovery Application is a Web
browser.

6.2.6. DDVersion

Name DDVersion

Definition The version of the Download Descriptor technology.

Status Download Descriptor: Optional. User Agent: Optional

Datatype String (decimal)

Refinement

Comment The format of the Version is “major.minor”. A Download Agent not supporting the
“major” version of the Download Descriptor ersion MUST send an “Invalid
DDVersion” status code to the installNotifyURI and reject the Download
Descriptor.

The “minor” version is used to differentiate between backwards compatible
versions of the Download Descriptor.

The version of the Download Descriptor defined in this specification is “1.0”.

The default DDVersion, when the attribute is omitted from the Download
Descriptor, is “1.0”

6.2.7. name

Name name

Definition A user readable name of the Media Object that identifies the object to the user.

Status Download Descriptor: Optional. User Agent: Optional

Datatype String

Refinement Does not have any particular semantics, is intended for user interpretation.

Comment The client MAY use the name as the default storage name, or as a part of it. The
Download Agent MAY also use the attribute Vendor to ensure uniqueness between
names.

6.2.8. description

Name description

Definition A short textual description of the media object

Status Download Descriptor: Optional. User Agent: Optional

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 30 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

Datatype String

Refinement Does not have any particular semantics, is intended for user interpretation.

Comment SHOULD be displayed to the user before the download of the media object is
accepted by the end user.

Allows the user a last check before the transaction is completed. This may for
example catch lacking synchronisation with regards to the presented content in the
presentation server and the download server.

6.2.9. vendor

Name vendor

Definition The organisation that provides the media object

Status Download Descriptor: Optional. User Agent: Optional

Datatype String

Refinement Does not have any particular semantics, is intended for user interpretation.

Comment The attribute MAY be displayed to the user during installation. The attribute MAY be
used by the Download Agent to create a unique name for the media object when it is
stored in the device.

6.2.10. infoURL

Name infoURL

Definition A URL for further describing the media object

Status Download Descriptor: Optional. User Agent: Optional

Datatype URL

Refinement Does not have any particular semantics, is intended for user interpretation.

Comment The infoURL is used to for information that describes the media object rather than
the download transaction.

6.2.11. iconURI

Name iconURI

Definition The URI of an icon

Status Download Descriptor: Optional. User Agent: Optional

Datatype URI, URL

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 31 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

Refinement -

Comment May be used by the client to represent the media object (e.g. an application) in the
user interface (e.g. application manager).

6.2.12. installParam

Name installParam

Definition An installation parameter associated with the downloaded media object

Status Download Descriptor: Optional. User Agent: Optional

Datatype VeryLongString

Refinement -

Comment The value is an opaque text string that is handed by the Download Agent to the
Media Object Installer. The syntax and semantics of the opaque string is relevant
only to the particular Media Object Installer. The value is fully transparent to the
Download Agent.

6.3. Extensibility
The Download Descriptor used by OMA contains general metadata that is useful for all types of media. In some cases,
however, the standardised attributes are not sufficient and media type specific metadata must be added.

Extensions can be made to the Download Descriptor by defining the extension data in a separate namespace. That way,
extension names will not collide with the standard metadata. The extensions can be used to trigger additional steps in
the downloading procedure.

The extensibility is governed by a few basic rules:

• If an attribute is unknown to the Download Agent the attribute MUST be discarded

• If a value of an attribute is unknown to the Download Agent the attribute MUST be discarded

6.3.1. Media type with custom installation commands

The mechanism defined for the Download Descriptor is extensible. It is for example possible to extend the file with
attributes that are specific to the installation of a specific media type. However, it is recommended that the installParam
attribute be used for custom installation commands as described in section 5.2.5.1, Media Object installation parameter.

The content handler for the Download Descriptor SHOULD evaluate its capabilities to download the object, and abort
the download process in case it cannot finalise it properly.

The content handler SHOULD evaluate the received media object (without indication to the user) before sending an
Installation Notification indicating success. If it determines that it cannot process the received media object then the
error code “Non-Acceptable Content” should be posted to the server, and the media object should be discarded.

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 32 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

7. Relationship to JavaTM MIDP OTA (informative)
The Download Descriptor for Generic Content Download may be used for all downloaded content types including
MIDlets. However, whenever possible the JavaTM Application Descriptor (JAD, as defined in [MIDPOTA]) should be
used for JavaTM MIDlet downloads.

The mechanism for JavaTM MIDlet download is specified in the MIDP OTA Provisioning RP specification (see [MIDP]
and [MIDPOTA]). This specification allows vendor specific enhancements to be defined. Some of the attributes defined
in this specification may be used in a JAD file for download of MIDP objects.

7.1. MIDP OTA and OMA Download
The framework for generic content download currently consists of the OMA Download mechanism, and a media type
specific content download mechanism for JAR files (MIDP download as defined in [MIDPOTA]). The OMA
Download mechanism for generic content is not intended to be used in the application space of JAD.

• If the media type to be downloaded is a JAR file then the Download Descriptor should be a JAD file as defined in
[MIDPOTA].

• If the media type to be downloaded is different from a JAR file, i.e. is not a MIDP object, then the Download
Descriptor should be as defined in this specification.

The intent of the specification is to encourage similarity between MIDP download and OMA Download, However, no
formal relationship between the two specifications exists (except that the generic content download references the
MIDP specification for MIDP OTA Provisioning).

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 33 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

8. XML Syntax for Download Descriptor
This section describes the syntax of the DD (Download Descriptor) media type. The syntax is expressed as XML
[XML].

The media type application/vnd.oma.dd+xml has been registered with IANA for use as the Download Descriptor. The
XML Schema [XMLSchema1] [XMLSchema2] for this media type is defined in section 8.2.

The Download Descriptor is defined using XML Namespaces [XMLNS]. The Download Agent MAY implement a
fully namespaces aware XML processor as defined by [XMLNS], but is not required to do so in order to correctly
process Download Descriptors.

8.1. Example
<media xmlns="http://www.openmobilealliance.org/xmlns/dd">
 <type>image/gif</type>
 <objectURI>http:/download.example.com/image.gif</objectURI>
 <size>100</size>
 <installNotifyURI>http:/download.example.com/
 image.gif?id=image</installNotifyURI>
</media>

8.2. XML Schema
<xsd:schema
 targetNamespace="http://www.openmobilealliance.org/xmlns/dd"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dd="http://www.openmobilealliance.org/xmlns/dd" >

<xsd:simpleType name="ShortString">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="40" />
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="LongString">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="160" />
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="VeryLongString">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="255" />
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="URI">
 <xsd:restriction base="xsd:anyURI">
 <xsd:maxLength value="128" />
 </xsd:restriction>
</xsd:simpleType>

<xsd:element name="name" type="dd:ShortString" />
<xsd:element name="DDVersion" type="dd:ShortString" />
<xsd:element name="objectURI" type="dd:URI" />

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 34 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

<xsd:element name="size" type="xsd:positiveInteger" />
<xsd:element name="type" type="dd:ShortString" />
<xsd:element name="vendor" type="dd:ShortString" />
<xsd:element name="description" type="dd:LongString" />
<xsd:element name="installNotifyURI" type="dd:URI" />
<xsd:element name="nextURL" type="dd:URI" />
<xsd:element name="infoURL" type="dd:URI" />
<xsd:element name="iconURI" type="dd:URI" />
<xsd:element name="installParam" type="dd:VeryLongString" />

<xsd:element name="media">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="dd:objectURI" />
 <xsd:element ref="dd:size" />
 <xsd:element ref="dd:type" maxOccurs="unbounded"/>
 <xsd:element ref="dd:name" minOccurs="0"/>
 <xsd:element ref="dd:DDVersion" minOccurs="0"/>
 <xsd:element ref="dd:vendor" minOccurs="0" />
 <xsd:element ref="dd:description" minOccurs="0" />
 <xsd:element ref="dd:installNotifyURI" minOccurs="0" />
 <xsd:element ref="dd:nextURL" minOccurs="0" />
 <xsd:element ref="dd:infoURL" minOccurs="0" />
 <xsd:element ref="dd:iconURI" minOccurs="0" />
 <xsd:element ref="dd:installParam" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

</xsd:schema>

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 35 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

Appendix A. Example of Download Transaction (informative)
The example below shows a very simple use case of a download transaction.

HTTP Request to view a download service page
When requesting the rendering a service page, the request might look as follows:

GET http://www.service.com/download_service.html
Host: www.service.com
Accept: image/gif, multipart/mixed, application/vnd.oma.dd+xml, text/html

The response from server might look as follows:

HTTP/1.1 200 OK
Server: CoolServer/1.3.12
Content-Length: 2543
Content-Type: text/html

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN" "http://www.wapforum.org/DTD/xhtml-
mobile10.dtd" >
 <html xmlns="http://www.w3.org/1999/xhtml" >
 <head>
 <title>Service presentation</title>
 <base href="http://host.foo.bar/" />
 </head>
 <body>
 <p>Please select the object
 here!</p>
 </body>
</html>

HTTP Request for Download Descriptor
When requesting the download of a download descriptor, the request headers might look as follows:

GET http://host.foo.bar/pic-dir/picture.dd?ID=1234
Host: host.foo.bar
Accept: application/vnd.oma.dd+xml
User-Agent: CoolPhone/1.4
Accept-Language: en-US, fi, fr
Accept-Charset: utf-8

The response from server might look as follows:

HTTP/1.1 200 OK
Server: CoolServer/1.3.12
Content-Length: 50
Content-Type: application/vnd.oma.dd+xml; charset=utf-8

<media xmlns="http://www.openmobilealliance.org/xmlns/dd">
 <type>image/gif</type>
 <objectURI>http:/foo.bar.com/pic-dir/picture.gif

</objectURI>
 <size>1234</size>
 <installNotify-URI>http:/foo.bar.com/status</installNotify-URI>

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 36 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

</media>

HTTP Request to Install a Media Object

When requesting the download of a Media Object file, the request might look as follows:

GET http://host.foo.bar/pic-dir/picture.gif
Host: host.foo.bar
Accept: image/gif, image/jpg

The response from server might look as follows:

HTTP/1.1 200 OK
Server: CoolServer/1.3.12
Content-Length: 25432
Content-Type: image/gif

… GIF picture…

Install Status via HTTP Post Request

After a successful reception of the GIF, the following would be posted:

POST http://foo.bar.com/status
Host: foo.bar.com
Content-Length: 13

900 Success

The response from the server might be:

HTTP/1.1 200 OK
Server: CoolServer/1.3.12

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 37 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

Appendix B. Static Conformance Requirements (Normative)
The notation used in this appendix is specified in [CREQ].

Item Function Reference Status Requirement
DL-OTA-C-001 Support for separate delivery

of download descriptor and
media object

5 M

DL-OTA-C-002 Support for co-delivery of
download descriptor and
media object

5.1.1.1 O DL-OTA-C-003

DL-OTA-C-003 Support multipart/related or
application/vnd.wap.multipar
t.related

5.1.1.1 O

DL-OTA-C-004 Support for transfer protocol 5.1.1 M DL-OTA-C-005 OR
DL-OTA-C-006

DL-OTA-C-005 Support for W-HTTP transfer
protocol

5.1.1 O W-HTTP:MCF AND
DL-OTA-C-022

DL-OTA-C-006 Support for WSP 5.1.1 O WSP:MCF
DL-OTA-C-007 Support for WAPTLS or

WTLS for secure connections
5.1.1 O WAPTLS:MCF OR WTLS:MCF

DL-OTA-C-008 Discard media object if
download transaction
aborted.

5.1.1.1 M

DL-OTA-C-009 Discard download descriptor
if major version not
supported.

5.2.1 M

DL-OTA-C-010 Correct processing of
download descriptor

5.2.1.1 M

DL-OTA-C-011 Use download descriptor to
do capability checking

5.2.2 M

DL-OTA-C-012 Allow user to confirm media
object download

5.2.3 O

DL-OTA-C-013 Use objectURI to retrieve
media object

5.2.4 M

DL-OTA-C-014 Send status report to indicate
success or failure if
InstallNotifyURI specified

5.2.5 M

DL-OTA-C-015 Discard media object if error
status report sent

5.2.5 M

DL-OTA-C-016 Existence of Media Object
Installer that supports
installation parameter

5.2.5.1 O DL-OTA-C-017

DL-OTA-C-017 Pass installParam value to
Media Object Installer

5.2.5.1 O

DL-OTA-C-018 Prevent access to media
object until status report
succeeds (at least one well-
intentioned attempt).

5.2.6 M

DL-OTA-C-019 Support same scheme for
status report as used for
media object download

5.2.6 M

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 38 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

Item Function Reference Status Requirement
DL-OTA-C-020 Navigate browser to

nextURL
5.2.7 O WAESpec:MCF

DL-OTA-C-021 Proper formatting of status
report

5.3.1 M

DL-OTA-C-022 Support for HTTP Basic
Authentication

5.6.2 O

DL-OTA-C-023 Use media type delared by
transport or packaging to
identify download descriptor

6.1 M

Item Function Reference Status Requirement
DL-DD-C-001 Ignore unsupported optional

attributes
5.2.1.1 M

DL-DD-C-002 Ignore unknown attributes 5.2.1.1 M
DL-DD-C-003 Ignore multiple instances of

attribute (except Type)
5.2.1.1 M

DL-DD-C-004 Ignore unknown attribute
values

6.3 M

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 39 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

Appendix C. Change History (Informative)
Type of Change Date Section Description
Class 0 12-Sept-2002 The initial version of this document.
Class 2 05 Dec 2002 Fix references to HTTP/S and rework SCR table
Class 2 21-Feb-2003 8.2 Modifications to XML Schema

OMA-Download-OTA-v1_0-20030221-C, Version 21-Feb-2003 Page 40 (40)

 2003, Open Mobile Alliance, Ltd.
All rights reserved

Appendix D. Media Type Registration

...Registration of MIME media type application/vnd.oma.dd+xml

 MIME media type name: application
 MIME subtype name: vnd.oma.dd+xml
 Required parameters: none
 Optional parameters:

 charset
 This parameter has identical semantics to the charset parameter
 specified in [XMLMIME].

 version
 Indicates the Download Descriptor version. The value has the
 format: <major>.<minor>; where major and minor are integers. For
 example, version="2.1" indicates version 2.1.

 Encoding considerations: See [XMLMIME].

 Security considerations: See [XMLMIME].

 Interoperability considerations:
 The OMA Download specifications
 [OMADL] specify user agent (Download Agent) conformance rules that
 dictate behaviour that must be followed when dealing with, among other
 things, unrecognized elements.

 Published specification:
 The OMA Download specification is published at
 http://www.openmobilealliance.org/

 Applications which use this media type:
 OMA Download agents, see [OMADL].

 Additional information:

 Magic number: There is no single initial byte sequence that is always
 present for Download Descriptor files.

 File extension: .xml or .dd

 Macintosh File Type code: TEXT

 Person & email address to contact for further information: Open Mobile Alliance
 <technical-comments@mail.wapforum.org>

 Intended usage: COMMON

 Author/Change controller: The OMA Download specifications are a work
 product of the Open Mobile Alliance's WAG Working Group. The Open Mobile Alliance has
 change control over these specifications.

....Fragment identifiers

 Fragment identifiers are not used for this media type.

....References

[OMADL] "OMA Download OTA Specification", Open Mobile Alliance
Specification. Available at <http://www.openmobilealliance.org/>.

[XMLMIME] Murata, M., St.Laurent, S., Kohn, D., "XML Media Types", RFC
3023, January 2001.

