" OMA

Open Mobile Alliance

Generic Open Terminal APl Framework (GotAPI)
Candidate Version 1.1 — 15 Dec 2015

Open Mobile Alliance
OMA-ER-GotAPI-V1 1-20151215-C

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 2 (81)

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of
this document and the information contained herein, and makes no representations or warranties regarding third party IPR,
including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you
must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in
the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

http://www.openmobilealliance.org/UseAgreement.html
http://www.openmobilealliance.org/ipr.html

OMA-ER-GoOtAPI-V1_1-20151215-C Page 3 (81)

Contents
Lo SCOPE ...ttt bbb kR ekt E e e Rt eh ekt AR e Rt AR e Rt R e e Rt R e eReeh e e R e nb et ebenh et ebenbe e ebe et e 5
2. REFERENCES ..ottt ititit ettt sttt ettt ettt et et e84 e e a8 e a8 e a8t a4 et a8t ke s a8 e ekt e st e bt e Rt e b e b e st e b et e n e et et st et et enen 6
2.1 NORMATIVE REFERENCES.....c.ttttitttettstetetesteeetesseseetesteseatesseseasesseseesesseseasessessasessessasesseseasesseseesessessesessessesessessasesseneas 6
2.2 INFORMATIVE REFERENCESccitttttiteiettitetetesteseetesteseetesseseatesseseetesseseabesseseebeabeseebesbe e ebesbeseebesbeseebenbeeabenbeeabenteseas 6
3. TERMINOLOGY AND CONVENTIONScotititiieiittsieeste ettt et aesastesseseabesaesassesaesesbesseseabessesessessessssessenes 7
K T8 A 0701 N1V = N T N OO OSSP SOPRTPRSPRPTSPRIION 7
3.2 DEFINITIONS. ...ttt et etee e et ekttt sttt he e bt e bt e st e ea b e e b e e e h e o bt e ke 42 et e R e e £H e e £H e £ b £ 2 b e 2R b e eR b e eE £ 2 eE £ e AE £ e ke e beehe e eheeebeeebeambeanbeenbenbnanbeen 7
3.3 ABBREVIATIONS ...t tuttetteettesteesteesbeesteaseeateeaheeabe e beeabeesb e et e e ebeesbe e ke 4R et eRe e 4R e e 4E e 2 b e em ke ek b e eE £ e AE £ e nb e e ke e s e e eReeeReeebe e bt enbeenbennnenreen 7
4. INTRODUCTION Lottt ettt bt s bbb b8 e bt bR bt b s bt bR e bt e b et b e s b et e bt s be b e bt abe b enenben e 8
4.1 WERSION L0 ottt ettt ekt b ekt ekt h e ket £h e S h e 2 b e 22 b £ 2R b £ SR b e £ R e e Ak £ e R e e ke SRR e eRe e eRe e eRe e bt e beenbeenrenrrenreen 10
4.2 WERSION L1 oottt ettt ettt b e bttt ekt h et ekt e e he e S bt 2k e 22 b e 2R b e eh b e e E e e Ak £ e b e e ke e R e e AR e eRe e eRe ekt e beenbeenrenbrenreen 10
5. GOTAPI ENABLER RELEASE DESCRIPTION (INFORMATIVE)ccociiiiiiiiiiie e 11
6. REQUIREMENTS (NORMATIVE)ottt ettt b ettt sb e et sb et e b 12
6.1 HIGH-LEVEL FUNCTIONAL REQUIREMENTS ..uutiiiiiiiiiiiitiitiie e st e ibbbetts e s s s s ssbbatesesesssssbbbasssesssassbsbasssesssassssbasssesssssssne 12
6.1.1 SECUNILY AN PIIVACYeutiteitiiteit ettt sttt h bbbt e e e b ekt bt b e bt e bt e e e mb e neesbeebeebe et e e st enbennenbenbenae s 12
7. ARCHITECTURAL IMODELocoiitiiiit ittt sttt st b et b et b ettt bt et sb et et e sbe e ebenbe e 14
7.1 ARCHITECTURAL DIAGRAMoiitiiitteittiit ettt sttt et es bttt esteesbeesbe e be et e eae e ehe e ebe e bt e a bt ea b e eb b e eb e e nbeenbeebeembeeaeesbeenbeanbeenns 15
7.2 FUNCTIONAL COMPONENTS AND INTERFACES/REFERENCE POINTS DEFINITION....ccutiiiieriiniesiesiesieseeeeseesieseesaens 18
7.2.1 FUNCLIONAL COMPONENESvieiieiesie sttt e et et et te e re e s e e e e tesbenteeneesee e ensesaeseenaeaneeneeseenseneenrens 18
7.2.2 L1 (=] o= OSSOSO PP SOPRO 19
7.3 SECURITY CONSIDERATIONScutiteueettstereatestestatestestatesteeasessesessessesessesseseasessestasessestssesseseasesseseasessesessessesessessesessensens 35
7.3.1 AWULNOTIZALION ...ttt bbbttt b e ekt s btk e b et ekt sbe ekt sb et ek e e b et et e sbe e ebenbe e ebenbe e 35
7.3.2 Confidentialty AN INTEQIILY c.vovvireiei ettt re e e et e tesresaesnesteereeneeseeneeneenreas 36
7.3.3 IMMUNILY FIOM ATACK ...ttt bbbttt h e e e b et bt b e bt et e e e et e b sbe et 36
8. TECHNICAL SPECIFICATIONS ...ttt ettt ettt et sb e et b et e s btk e s b et et e sb et ebesbe e ebesbe e ebenbenea 40
8.1 COMMON APIS FOR GOTAPT APPLICATIONSciittiittetiautiattasteesteesteesteasessessseesseasseasseassasssasseesbesssessesssessessssesseanns 40
8.1.1 Availability AP1 0on the GOtAPI-1 INTEITACEccueiueiiiiiiee e e 40
8.1.2 INVOKING the GOLAPT @PPIICAIION ...ttt bbbt n et e b e 41
8.2 GOTAPT AUTHORIZATION SERVERccttittiittaittattaattasteasteaseesteesteesteaaaeassessesaseeabeabeanseassesssesbeesbeasbeassesanesseeabeenseanns 42
8.21 (€] 0| TSP U R PROPRPTTTPRTRTORN 42
8.2.2 F ool (0] (-] OO TS PRSPPI 45
8.3 GOTAPI SERVER......ccttitiietiite ettt sttt sttt b et h etk btk s btk s b st e b s b e Rt e b e e b e Rt e bt e b e st e b b e bt ek s b e Rt ek st e st e b b e bt et nber e et e e 47
8.3.1 Service Discovery APl on the GOtAPI-1 INEITACEccvieiiiieecie e nne 47
8.3.2 Service Information API 0N the GOtAPI-1 INtEITACE.coiiiiiiiiiie e 50
8.3.3 Common data set of request on the GOtAPI-1 INtEITACEcvvveieieiece s 51
8.3.4 Common data set of responses on the GOtAPI-1 INTEIFACEooiiieiiiiiie e 52
8.3.5 Plug-In discovery on the GOtAPI-4 INTEITACEc.eiiiiiieieeee e bbb e 52
8.3.6 Plug-In approval on the GOtAPT-4 INTEITACEcoiiiiiiieieie e bbb sa 56
8.3.7 Common data set 0N the GOLAPI-4 INTEITACEcoviiiii i e sa 61
8.4 ASYNCHRONOUS MESSAGINGcuueeteeteaietauetaueeattasteaseastasssasssesseesseasseassessseasesabeaaseanseasseassesbeesbeeabeeeesseesaeesbeesbeanseanns 63
8.4.1 Request for asynchronous messaging on the GOtAPI-1 INterface.........cccoovvivvieiviieiiecie s 63
8.4.2 Request for asynchronous messaging on the GOtAPI-4 INterface.........cccovviviieiviieiieeie s 65
8.4.3 Response for asynchronous messaging on the GOtAPI-4 INtErfaceccccvvveiviieiiecie s 67
8.4.4 Response for asynchronous messaging on the GOtAPI-1 INtErfacecccoeivveiviiviieeiie e 68
8.4.5 Establishing @ WebhSOCKEt CONNECLIONcviiiiiiiiiceeee ettt re e e e e eesnenne s 69
8.4.6 Establishing the GOtAPI-5 INEITACEcveiiiii ettt re e e e e eesaenre s 69
8.4.7 The response for establishing the GOtAPI-5 INtEITACEcoeiiiiiiie s 70
8.4.8 Asynchronous message from the Plug-In to the GotAPI Server on the GotAPI-4 Interafcecccccceeveienene 70
8.4.9 Asynchronous message from the GotAPI Server to the application on the GotAPI-5 Interface............ccccc.e... 71
8.4.10 Stop request from the application to the GotAPI Server on the GotAPI-1 Interfacecoccooeviiiiiiiciencnenn 72
8.4.11 Stop request from the GotAPI Server to the Plug-In on the GotAPI-4 Interface.........ccovviiiiiiiniciciene 72

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 4 (81)

8.4.12 Stop response from the Plug-In to the GotAPI Server on the GotAPI-4 Interface.........cccovvviviiveievecneienenenns 74
8.4.13 Stop response from the GotAPI Server to the application on the GotAPI-1 Interface.........ccovvvevveveeicrennnnnnn, 75
8.4.14 Unexpected disconnection of the WebhS0CKEt CONNECLIONcevrieriiriiirec s 76
9. RELEASE INFORMATIONovvoiimmiiieessameseesssssesssssssssessssssssssssssssssesssssss s ssssss s 77
9.1 SUPPORTING FILE DOCUMENT LISTING. ...ccuiiiiiitisiiiiiie ittt sttt sttt sr et sa et sb bbb sr s 77
0.2 OMNA CONSIDERATIONS ...c.utitiitiitiatiestire st st st st sses et se s ar st bt b e be b e e e b e s e ah e s b e s b e b e e b e st e e e eb e s be s b e e b e e b e et e e b e snesrenrs 77
APPENDIX A, CHANGE HISTORY (INFORMATIVE)essiiviiiiiriesmmeesessssessssssssesssssssssssssssssesssssssssssssssssesses 78
Al APPROVED VERSION HISTORY ...octiiiiiiiiiiiiiiie ittt bbb a e ar bbb en e e 78
A.2 DRAFT/CANDIDATE VERSION 1.1 HISTORY ...cotitiiiiiitiiieiiite ettt sn ettt sr ettt sn e sne e 78
APPENDIX B. CALL FLOWS (INFORMATIVE) ...ttt bbb 79
APPENDIX C. GOTAPI ENABLER DEPLOYMENT CONSIDERATIONScomiivvienrrinnesisssesiesssssssssise 80
APPENDIX D. PLUG-IN DISCOVERY MECHANISMS FOR ANDROID.......ccccoiiiiiiiiiie et 81
Figures
Figure 1: Conceptual Implementation (INFOrMALIVE)ccccviiiiceiice et seenne s 9
Figure 2: GOtAPT ArchiteCtural DIAQIamc.cveiiieiiie ettt re s e et e e seestestesneeraereeneeseeneeneenns 16
Figure 3: GotAPI Architectural Diagram (INFOrMAaLIVE)..........coiiiiiiiiii e e 17
Figure 4: One shot AP1 and ONe-Way PUSN AP ...t e e bbbt e e b e 19
FIQUIE 52 THE TSF PrOCEAUIE ...ttt ettt bbbt b et h e e b e b eh e bt bt e b e e Rt e a b e nbeebeeb e e bt et e e reeneeeenbe st e 21
Figure 6: WebhSOCKET USEBA FOF TSH ...ttt b e bbbt et e e b e eb e sb e bt et e e e ene e eenae e e 22
Figure 7: Procedure of security enforced application authorization on the GotAPI-2 Interfacec.ccocooiviiiicicnnnn 25
Figure 8: The procedure Of the SErVICE DISCOVEIYciiviiiiieiiieieiese e ste et et st re st estesaestesneare e e enseeenaeneenns 27
Figure 9: Service and PIUG-IN APPIOVAL.......coccv oot st re st e st st e tesneenaereeneeeeneenee e 29
Figure 10: Pass-through mechanism of Data FOrWardingccccoviiiriisieiieee e 30
Figure 11: The TSF MechaniSm fOr GOTAPI-4...........cooo ittt sa e te s neere e e e e e nae e e 31
Figure 12: WebhS0CKet USEA TOr the TSFc.i i et ettt e neere e e e e e nae e e 32
Figure 13: Procedure of establishing a WebSocket connection for the GotAPI-5 interfacec.ccoovevvivcievcicccsenenn, 33
Figure 14: Common use of a single WebSocket connection for multiple APIS ... 34
Figure 15: HMAC server authentication — NOFMAl CaSE.........ccuiiriiiiiiiiiiirieie e 38
Figure 16: HMAC server authentication — Spo0fing AttaCk Caseccoiiiiiiiiiiie it 39
Tables
Table 1: High-Level FUNCLIONAl REQUITEMENTSociiiiiiie ittt bbbt b e bbbttt sbe e 12
Table 2: High-Level Functional Requirements — Security and Privacy ItemSccociiiiiiiiiiinc e 12
Table 3: High-Level Functional Requirements — Authentication and Authorization Items............cccccoevvivviveievcnic e, 13
Table 4: High-Level Functional Requirements — Data INtegrity ItEMSccooveieiirieiie i 13
Table 5: High-Level Functional Requirements — Confidentiality IteMS........c.ccocoeviiieiieiiiieiece e 13
Table 6: Cases of origins declaration by attacking native application and what the netstat can find...........c..cccccoevnnne. 25
Table 7: Listing of Supporting Documents in GOtAPT 1.1 REIEASE..........ccccvriviveieriie et 77

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 5 (81)

1. Scope

This Enabler Release (ER) document is a combined document that includes requirements, architecture and technical
specification of the Generic Open Terminal APl Framework (GotAPI) Enabler.

The scope of this enabler will include:

e Architecture and specifications for an API framework enabling web-based APIs to be exposed to apps running in
web browsers and as native apps (including but not limited to hybrid native/web apps)

e Supporting assets for the localhost API server framework, e.g. JavaScript libraries enabling abstractions of common
API functions (e.g. discovery, access, and session management)

o Aregistry of well-known API resources for OMA enablers, to be maintained as part of the OMNA

e Specification of API exposure patterns that are in general globally applicable to native device platforms

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 6 (81)

2. References
2.1 Normative References

[CORS] “Cross-Origin Resource Sharing”, Worldwide Web Consortium (W3C),
URL :http://www.w3.0rg/TR/cors/
[HTTP/1.1] “Hypertext Transfer Protocol -- HTTP/1.1”, Internet Engineering Task Force (IETF),
URL :http://tools.ietf.org/search/rfc2616
[HTTP2] “Hypertext Transfer Protocol version 2”, Internet Engineering Task Force (IETF),
URL :https://tools.ietf.org/html/draft-ietf-httpbis-http2
[JSON-RPC] “JSON-RPC 2.0 Specification”, JSON-RPC Working Group, URL :http://www.jsonrpc.org/specification
[OAuth2.0] “The OAuth 2.0 Authorization Framework”, Internet Engineering Task Force (IETF),
URL :http://tools.ietf.org/html/rfc6749
[OMA DM] “OMA Device Management VV2.0”, Open Mobile Alliance™, 10 Dec 2013,

URL :http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-
releases/oma-device-management-v2-0

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,
URL :http://www.ietf.org/rfc/rfc2119.txt
[RFC6454] “The Web Origin Concept”, Internet Engineering Task Force (IETF),
URL :http://tools.ietf.org/html/rfc6454
[Rtcweb] “Rtcweb”, Internet Engineering Task Force (IETF), URL:http://tools.ietf.org/wg/rtcweb/
[SCRRULES] “SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures,
URL :http://www.openmobilealliance.org/
[SSE] “Server-Sent Events”, Worldwide Web Consortium (W3C), URL.: http://www.w3.0rg/TR/eventsource/
[WebRTC] “WebRTC 1.0: Real-time Communication Between Browsers”, Worldwide Web Consortium (W3C),
URL :http://www.w3.0rg/TR/webrtc/
[WebSocket] “The WebSocket API”, Worldwide Web Consortium (W3C), URL:http://www.w3.0rg/TR/websockets/
[WebSocketProtocol] “The WebSocket Protocol”, Internet Engineering Task Force (IETF),
URL :https://tools.ietf.org/html/rfc6455
[XHR] “XMLHttpRequest Level 1”, Worldwide Web Consortium (W3C),

URL:http://www.w3.0rg/ TR/ XMLHttpRequest/

2.2 Informative References

[OMADICT] “Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2.8, URL:http://www.openmobilealliance.org/

[OMNA] “OMA Naming Authority”. Open Mobile Alliance™.,

URL :http://www.openmobilealliance.org/tech/omna.aspx
[RFC6454] “The Web Origin Concept”, URL:https://www.ietf.org/rfc/rfc6454.txt
[RFC6973] “Privacy Considerations for Internet Protocols”, A. Cooper, et al, July 2013,

URL:http://tools.ietf.org/html/rfc6973

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

http://www.w3.org/TR/cors/
http://tools.ietf.org/search/rfc2616
https://tools.ietf.org/html/draft-ietf-httpbis-http2
http://www.jsonrpc.org/specification
http://tools.ietf.org/html/rfc6749
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-device-management-v2-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-device-management-v2-0
http://www.ietf.org/rfc/rfc2119.txt
http://tools.ietf.org/html/rfc6454
http://tools.ietf.org/wg/rtcweb/
http://www.openmobilealliance.org/
http://www.w3.org/TR/eventsource/
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/websockets/
https://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/XMLHttpRequest/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/tech/omna.aspx
https://www.ietf.org/rfc/rfc6454.txt
http://tools.ietf.org/html/rfc6973

OMA-ER-GoOtAPI-V1_1-20151215-C Page 7 (81)

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY™”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be
informative.

3.2 Definitions

API Patterns Design guidelines and requirements for definition of APIs

Hybrid Native/Web App An application designed to execute under the native OS / middleware environment of a device, and that
use native APIs for the execution of web content in addition to native code.

JavaScript Use definition from [OMADICT].
Native App An application designed to execute under the native OS / middleware environment of a device.

Uniform Resource Use definition from [OMADICT].

Identifier

User Agent Use definition from [OMADICT].

Web The World Wide Web, a content and application framework based upon hypertext and related

technologies, e.g. XML, JavaScript/ECMAScript, CSS, etc.

Web Application An application designed using Web technologies (e.g. HTML, CSS, and Javascript).

WebSocket An API providing networking services per the WebSocket standard [WebSocket].
3.3 Abbreviations

API Application Programming Interface

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

OMA Open Mobile Alliance

REST REpresentational State Transfer

RPC Remote Procedure Call

SCR Static Conformance Requirements

TS Technical Specification

UA User Agent

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WRAPI The OMA Web Runtime API enabler

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 8 (81)

4. Introduction

The concept of a common OMA device API framework, through which OMA enablers can be exposed to applications
executing in various execution environments, has been a discussion thread in OMA for several years. For the web, the
discussion started with Client Side Enabler API [CSEA] work item, and followed by the Web Runtime API [WRAPI] work
item which established an initial pattern for OMA API exposure to web applications, focused on the requirements of the
OMA Push enabler. The need for more broadly applicable API patterns was recognized during development of APIs for the
Mobile Codes 2.0 [MCAPI] enabler and the Open Connection Management 1.1 APl [CMAPI] enabler. Interest in
incorporating the WRAPI local API server concept has further been expressed for the RCS-enabling enablers of COM, and
the Device Management enablers, among others.

This specification defines a variety of APl exposure patterns for use in development of OMA enablers, and the functions
required by API servers that support those exposure patterns. APIs designed per these patterns are intended to be “web-
based” (i.e. accessed via the use of web technologies) and exposed to apps running in the following contexts:

e Web Browser apps, i.e. web apps running in a window of a web browser

e Web Runtime apps, i.e. web apps running outside a browser, e.g. under a Widget Engine or other “chromeless”
runtime for execution of web content as standalone apps

e Hybrid Native/Web apps, i.e. apps that run web content through native APIs for that purpose

e Native Apps that directly use native platform APIs enabling use of the web-related protocols described in this
document. Though not leveraging a full web execution environment, such apps can use the same network-based
APIs as web apps.

For simplicity, the web API client environment provided by each of these contexts is referred to here as the User Agent (UA).
The OMA enabler clients that expose APIs via the GotAPI patterns are referred to here as the GotAPI Server. GotAPI
Servers may also act as OAuth servers for other GotAPI Servers, and in that role are referred to here as GotAPI Auth Servers.

The web-based methods defined by GotAPI are intended to offer a flexible set of options for OMA enablers to expose their
services to apps via web-based APIs. Such APIs are primarily intended to be exposed to apps running in the device hosting
the OMA enabler client, but in principle could also be exposed to apps in other devices that are networked with the OMA
enabler client host device.

The exposure of OMA enabler-based services via such web-based APIs is intended to broaden the reach of OMA enabler
deployments, by making it possible for web apps to access them, without explicit UA support of APIs specifically designed
per the requirements of OMA enablers.

The figure below illustrates the relationships and conceptual interfaces between web apps, the UA, GotAPI-specified
functions (shaded), and other OMA-specified functions.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

http://member.openmobilealliance.org/Portal_WISPR/ReleaseView.asp?Releaseid=249&WkiNumber=W0251&TbId=142&subTB=142&TabId=&Param=bNW8rtPVxMovsvq4THoY&ShowApp=&Alone=&SearchWG=&SearchWkiNb=&SearchReleaseNb=&SearchChampion=&SearchRegName=&SearchFormalRelease=&SearchMaintenanceRelease=&SearchHistoricalRelease=&SearchService=&sort=&dir=
http://member.openmobilealliance.org/Portal_WISPR/ReleaseView.asp?Releaseid=263&WkiNumber=W0267&TbId=208&subTB=208&TabId=&Param=6QfloabyMfw2-2yTMRvX&ShowApp=&Alone=&SearchWG=&SearchWkiNb=&SearchReleaseNb=&SearchChampion=&SearchRegName=&SearchFormalRelease=&SearchMaintenanceRelease=&SearchHistoricalRelease=&SearchService=&sort=&dir=

OMA-ER-GoOtAPI-V1_1-20151215-C Page 9 (81)

F—————=—=—=—==-===-=-=-- > - ————————— a
1 1
1 1
1 1
: H :
1 . .
; User Devicé (Terminal) E
v v A 4
Native App Hybrid App Web App
Web App
- Web browser
Web Runtime
we 0 e) - T
WebSacket,| WebSocket, WebSacket! WebSocket, M\WebSocker ~ WebSocket,
WebRTC ! L WebRTC WebRTC ! L WebRTC | WebRTC , WebRTC
1 1 1
! ' GotAPI App
1 1 1
T T
| GotAPI Server | Gq:)tAPI Auth Server
! ! :
i i N :
! ! 0S-specific communication channel (e.g. Intent)
A 4 ¥ ¥
Extension Plug-In '|.|_
h
4 7} < > Other Enabler
L A
WiFi, WiFi, WiFi,
Bluetooth, Bluetooth, Bluetooth,
s etc. v etc. etc.
External Device External Device External Device

g Smart Health
Device , Care

Figure 1: Conceptual Implementation (Informative)

In the figure above:

The GotAPI functions include the GotAPI Server (including optionally acting as a distinct Auth server) and a
database of API access permissions.

The device OS provides intra-device and inter-device communication via network protocols such as HTTP,
WebSocket, Server-Sent Events, and WebRTC, via which the web-based APIs can be exposed.

The access permissions database is logically specified per its supporting operations and policy structure, but
interfaces to it are unspecified by GotAPI.

Interfaces to other OMA enabler clients are also unspecified.

GotAPI Servers may expose APIs for multiple OMA enablers, and either directly implement the related OMA
enabler functions or as above use unspecified interfaces exposed by the specific OMA enabler clients.

User interface functions can include a variety of means for assessing user consent for API access by apps, including
basic means such as device display and keyboard, or more advanced means such as Trusted User Interfaces (TUI) or
biometrics.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 10 (81)

4.1 Version 1.0

GotAPI version 1.0 includes the functionality:

e Architecture and specifications for GotAPI Servers and GotAPI Auth Servers in an APl framework enabling web-
based APIs to be exposed apps running in web browsers and as native apps (including but not limited to hybrid
native/web apps)

e Supporting assets for the localhost API server framework, e.g. JavaScript libraries enabling abstractions of common
API functions (e.g. discovery, access, and session management)

o Aregistry of well-known API resources for OMA enablers, to be maintained as part of the OMNA

o Specification of API exposure patterns that are in general globally applicable to native device platforms

4.2 Version 1.1

GotAPI version 1.1 includes the functionality:

e Architecture and specifications for supporting WebSocket. A new interface GotAPI-5 is added between applications
and the GotAPI Server to support WebSocket for asynchronous messaging. WebSocket may already be supported
by GotAPI 1.0 by use of TSF (Temporary Server Feed), implementing a WebSocket server (i) in the GotAPI Server
or ii) in Plug-Ins. But the details are left open for implementations.

e GotAPI 1.1 provides the 3rd mechanism to offer a WebSocket interface in a much simpler and standardized way as
the GotAPI-5 Interface.

e The new interface, GotAPI-5, enables the GotAPI Server to implement a WebSocket server in a standardized way
and Plug-Ins are not required to implement WebSocket servers. The GotAPI-5 Interface simplifies the Plug-In
implementation by getting the GotAPI Server to pass through the asynchronous messaging (WebSocket) to/from
Plug-Ins.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 11 (81)

5. GotAPI Enabler release description (Informative)

This release focuses on:

o the functions of GotAPI Servers and GotAPI Auth Servers, through which OMA enabler based services can be
exposed and access to the APIs managed

o the Extension Plug-Ins for external devices and internal enablers through which they communicate with the GotAPI
Server

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 12 (81)

6. Requirements

6.1 High-Level Functional Requirements

The following requirements outline the high-level set of options that GotAPI Servers may implement. The GotAPI technical
specifications will address the necessary functions for support of these options.

(Normative)

Label Description Release
GotAPI-HLF-01 | GotAPI Servers SHALL support APIs exposed via HTTP/1.1 [HTTP/1.1]. 1.0
GotAPI-HLF-02 | GotAPI Servers SHALL support APIs exposed via custom URI scheme handlers. >1.0
GotAPI-HLF-03 | GotAPI Servers MAY support APIs exposed via the WebSocket API [WebSocket]. 1.0
GotAPI-HLF-04 | GotAPI Servers MAY support APIs exposed via Server-Sent Events [SSE]. 1.0
GotAPI-HLF-05 | GotAPI Servers MAY support APIs exposed via the WebRTC API [WebRTC]. 1.0
GotAPI-HLF-06 | GotAPI Servers MAY support APIs exposed via HTTP/2.0 [HTTP/2.0]. 1.0
GotAPI-HLF-07 | GotAPI Servers SHALL support APIs exposed using the REST design pattern. 1.0
GOtAPI-HLE-08 GotAPI Servers MAY support APls exposed using the RPC design pattern, including 10

APIs exposed using JSON-RPC 2.0 [JSON-RPC] as payload protocol. '
GotAPI-HLF-09 | GotAPI Servers MAY support APIs that include transfer of any discrete media type. 1.0
GotAPI-HLF-10 | GotAPI Servers MAY support APIs that include transfer of any streamed media type. | 1.0
GotAPI-HLF-11 | GotAPI Servers SHALL expose APIs to UAs in the GotAPI Server host device. 1.0
GOtAPI-HLE-12 GotAPI Servers MAY expose APIs to UAs in devices other than the GotAPI Server >1.0
host device.
GOtAPI-HLE-13 Multl_ple GotAPI Se_rvers SHALL be implementable and functional simultaneously on >1.0
a device where possible.
GOtAPI-HLE-14 GotAPI _SHALL support an API that provides applications with a_vall_ablllty of 10
GotAPI in the device in response to query requests from the application.
GOtAPI-HLE-15 GotAPI Serv_er_s SHALL §upport invocation via a custom URI scheme, to startup the 10
server when it is not running.
GotAPI Server SHALL expose an interface to communicate with external devices
and internal enablers, so that different manufacturers are able to develop Extension
Plug-Ins for the GotAPI Server, and application developers are able to develop
GOtAPI-HLF-16 applications that can communicate with such other external devices and internal 1.0
enablers through GotAPI Server.
Note: The APIs for each device or enabler are out of the scope of this specification.
Table 1: High-Level Functional Requirements
6.1.1 Security and Privacy
The following requirements address the generic security and privacy enabling features of GotAPI Servers.

Label Description Release

GOtAPI-SEC-01 For clients in the ho_st device, GotAPI Servers MAY support APIs exposed over TLS >1.0
1.2-secured connections.

GOtAPI-SEC-02 For clients in other qlewces, GotAPI Servers SHALL support APIs exposed over TLS >1.0
1.2-secured connections.

GOtAPI-SEC-03 GotAI?I Servers SI_—lALL support measures to minimize security risks including 10
Intrusion and Denial-of-Service attacks.
Table 2: High-Level Functional Requirements — Security and Privacy Items

6.1.1.1 Authentication and Authorization

The following requirements address the ability of GotAPI Servers to identify API client apps and manage access to APIs.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GotAPI-V1_1-20151215-C

Page 13 (81)

Label Description Release
gftAPI'AUTH' GotAPI Servers SHALL support Cross-Origin Resource Sharing. 1.0
g‘;tAPI'AUTH' GotAPI Servers SHALL support management of APl access permissions. 1.0
063? API-AUTH- | 6 0tAPI Servers MAY support OAuth-based API access. 1.0
GotAPI-AUTH- | GotAPI Servers MAY act as an OAuth 2.0 [OAuth2.0] server for authorization of API 10
04 access permissions. '
GotAPI-AUTH- | GotAPI Servers MAY support user interfaces (UI) via which users authorize API 10
05 access permissions. '
g‘gtAPI'AUTH_ GotAPI Servers MAY support pre-configured, fixed APl access permissions. 1.0
g‘;ﬁAPI'AUTH' GotAPI Servers MAY support dynamic, updatable APl access permissions. 1.0
GotAPI-AUTH- | GotAPI Servers MAY support API access permissions managed through OMA >1.0
08 Device Management. '

Table 3: High-Level Functional Requirements — Authentication and Authorization Items
6.1.1.2 Data Integrity
The following requirements address the ability of GotAPI Servers to protect the integrity of data transferred via APIs.

Label Description Release
GotAPI-DATI-01 | GotAPI Servers SHOULD support data integrity for all data exchanged with clients. | 1.0
GotAPI-DATI-02 | GotAPI Servers SHOULD support data integrity verification via digitally signed API | 1.0

request/response payloads.

Table 4: High-Level Functional Requirements — Data Integrity Items

6.1.1.3 Confidentiality
The following requirements address the ability of GotAPI Servers to protect the confidentiality of data transferred via APIs.
Label Description Release
GotAPI-CONF-01 | GotAPI Servers SHOULD support confidentiality for all data exchanged with 1.0
clients.
GotAPI-CONF-02 | GotAPI Servers SHOULD support data confidentiality via encrypted API 1.0
request/response payloads.

Table 5: High-Level Functional Requirements — Confidentiality Items

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 14 (81)

7. Architectural Model

This section describes the architectural model and related aspects of the GotAPI Enabler.

The architecture definition and functionalities are based on the requirements defined in the Section 6.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GotAPI-V1_1-20151215-C

Page 15 (81)

7.1 Architectural Diagram

Newly added 1 L '
— Application :
GotAPI-5 GotAPI-1 GotAPI-2
GOtAPI GotAPI | GOtAPI3 & pojlicy |
Server Auth Server \ Management :
GotAPI-4
| Extension !
| Plug-Ins
Legend

Xyz-n

Components specified by this enabler
Components not specified by this enabler

Indicates use of an interface exposed by an Enabler/Component. The
Enabler/Component exposing the interface is indicated by the arrowhead.

Name of the interface exposed by Enabler/Component xyz
(following the interface naming convention)

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GotAPI-V1_1-20151215-C

Page 16 (81)

Newly added . H
— Application ;
GotAPI-5 GotAPI-1 GotAPI-2
GOtAPI GotAPI | GOtAPI-3 & policy |
Server Auth Server ' Management :
GotAPI-4
| Extension !
| Plug-Ins
Legend

Xyz-n

Components specified by this enabler
Components not specified by this enabler

Indicates use of an interface exposed by an Enabler/Component. The
Enabler/Component exposing the interface is indicated by the arrowhead.

Name of the interface exposed by Enabler/Component xyz
(following the interface naming convention)

Figure 2: GotAPI Architectural Diagram

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GotAPI-V1_1-20151215-C

Page 17 (81)

Newly added @
EEEE === == n User Devi
1 Application 1 sereviee
| -- . GotAP|—
GotAPI-5 |, | |, GotAPI-1 J, GotAPI-2
GotAPI GotAP!I L Policy M
Server Auth Server olicy Management
GOtAPI-4 GotAPI-3
Y e .- :
ﬁT:—:—:—:—:—:—L- - I l
II| Extension i : Other Enablers 1
|
1
J

R L —
:_ Otr_ler !
L _ Devices
Newly added @
AT E e e m == n User Devi
| Application [serbevice
r—_ == - -——=-=-=-- S
{GmAMF—
GotAPI-5 |, | |, GotAPI-1 J, GotAPI-2
GotAPI GotAPI L. Policy M {
Server Auth Server |~ olicy Managemen
GOtAPI-4 GotAPI-3
1
T T R

I Other Enablers 1

-] - - -
Other !

Devices

r-

Figure 3: GotAPI Architectural Diagram (Informative)

The diagrams above are not implementation diagrams but logical diagrams. In practice, the GotAPI Server and the GotAPI
Auth Server are implemented as a single application which is called as "GotAPI application”. The GotAPI 1.0 specification
assumes this implementation model. Namely, both servers listen to the same port number on one IP address.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

[OMA-Template-CombinedRelease-20150101-1]

OMA-ER-GoOtAPI-V1_1-20151215-C Page 18 (81)

Theoretically, it's possible to implement the GotAPI Server and the GotAPI Auth Server as separate applications. But this
implementation model is not supported in the GotAPI 1.0 specification.

7.2 Functional Components and Interfaces/reference points
definition
7.2.1 Functional Components
7.21.1 GotAPI Server
The GotAPI Server provides the following functions:
e Exposure of the GotAPI-1 interface, via which Applications can issue API requests and receive responses
e Binding of the GotAPI-1 interface to various specific interface technologies and payload protocols / design patterns.

e Exposure of the GotAPI-5 interface to support asynchronous communication between applications and Plug-Ins
based on WebSocket.

e Security and privacy protection for requests via the GotAPI-1 and the GotAPI-5 interfaces

e Protection of the GotAPI-1 and the GotAPI-5 interfaces from server spoofing, Intrusion and Denial of Service
attacks

e Exposure of the GotAPI-4 interface, via which Extension Plug-Ins can receive API requests from applications and
send responses to applications through the GotAPI Server

e Security and privacy protection for requests via the GotAPI-4 interface
e Protection of the GotAPI-4 interface from Intrusion and Denial of Service attacks

Web applications running on web browsers have to use the XMLHttpRequest to send requests to the GotAPI Server on the
GotAPI-1 interface. The origin of the web application is different from the origin of the GotAPI Server. Therefore, the
GotAPI Server SHALL support Cross-Origin Resource Sharing [CORS] so that the web browser allows the web application
to send HTTP requests to the GotAPI Server (i.e. cross-origin requests).

7.2.1.2 GotAPI Authorization Server

The GotAPI Authorization Server provides the following functions:
e Exposure of the GotAPI-2 interface, via which Applications can obtain authorization to make API requests
e User Interface functions as required to locally provide user information and consent for API access by applications
e Acting as a proxy for user consent obtained through host-device external functions (e.g. OAuth servers)
e Database of authorizations and user consent history
e Binding of the GotAPI-2 interface to various specific interface technologies and payload protocols / design patterns.
e Security and privacy protection for requests via the GotAPI-2 interface

e Protection of the GotAPI-2 interface from application identity spoofing, server spoofing, Intrusion and Denial of
Service attacks

e Optionally,exposure of the GotAPI-3 interface via which GotAPI authorizations can be provisioned through OMA
Device Management or an implementation-specific policy management service

Web applications running on web browsers have to use the XMLHttpRequest to send requests to the GotAPI Authorization
Server on the GotAPI-2 interface. The origin of the web application is different from the origin of the GotAPI Authorization
Server. Therefore, the GotAPI Authorization Server SHALL support Cross-Origin Resource Sharing [CORS] so that the web
browser allows the web application to send HTTP requests to the GotAPI Authorization Server (i.e. cross-origin requests).

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 19 (81)

7.2.2 Interfaces
7.2.21 GotAPI-1

The GotAPI-1 interface enables applications to make API requests and receive responses. This interface is generically

specified by GotAPI, as GotAPI-based API specifications will define specific request/response transactions that can be
utilized in host devices based upon the available interface technologies, payload protocols, and their applicable design

patterns. These options include:

e The interface technologies TLS 1.2, HTTP/1.1, HTTP/2, Server-Sent Events
e The design patterns REST and JSON, such as JSON-RPC

e The Temporary Server Feed (TSF) mechanism for binary data responses and triggering a different protocols, as
described below

e The initiation of the asynchronous messaging interface, GotAPI-5, to use WebSocket
The GotAPI Server SHALL support HTTP/1.1 as a communication protocol on the GotAPI-1 interface.
Additionally, the GotAPI Server MAY support HTTP/2 [HTTP2], Server-Sent Events [SSE] as needed.

For example, if the GotAPI Server provides an API for enabling asynchronous notifications such as an event listener (One-
way push API), the API can use Server-Sent Events.

Application GotAPI Server

One shot API (HTTP GET)

http://127.8.8.1:4835/gotapi/compass?attribute=oneshot
<

{ degree: 243 } application/json

One-way push API (Server-Sent Events)

http://127.8.8.1:4835/gotapi/compass?attribute=watch

data: { degree: 243 } text/event-stream

A A

data: { degree: 138 }

data: { degree: 157 }

Figure 4: One shot API and One-way push API

If applications require full-duplex real-time communications such as a chat service or asynchronous messaging, WebSocket
is a suitable protocol. This specification provides two ways to enable WebSocket connections for applications with Plug-Ins,
(i) WebSocket provided via GotAPI-5 interface where the GotAPI Server bridges WebSocket connections with Plug-Ins, and
(ii) TSF (Temporary Server Feed) mechanism where Plug-Ins directly provides WebSocket connections to applications.

The GotAPI Server SHALL support JSON as a data container format on the GotAPI-1 interface. Additionally, the GotAPI
Server MAY support JSON-RPC [JSON-RPC] as needed.

72211 The Temporary Server Feed (TSF) Mechanism
There are two possible approaches which the GotAPI Server returns API result data to applications:
e Direct response approach:
0 GoOtAPI Server returns binary data as a response directly
0 This approach is very common and GotAPI-1 already supports it

e Temporary Server Feed (TSF) approach:

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 20 (81)

0 When an app request something to the GotAPI Server on GotAPI-1, the GotAPI Server creates a temporary
URI for the requested data, then return it to the app with additional information

0 Then the app accesses the URI in order to fetch the binary data
The TSF approach has advantages below:
e Flexible API design
0 The TSF mechanism brings flexibility to API design for GotAPI-1
0 APIs can provide additional information relevant to the requested binary data with applications
o For example, APIs can provide adaptive streaming protocols over HTTP, such as SME + MPEG-DASH
1. An application requests MPD (Media Presentation Description) data over GotAPI-1

2. The application fetches fragments of the video data sequentially following the URLSs defined in the
MPD

e Web developer friendly

0 Lots of existing server-side Web APIs on the Internet provide APIs similar to TSF with developers
The GotAPI Server MAY support the TSF mechanism.

If the GotAPI Server supports the TSF mechanism, the GotAPI Server SHALL support the following steps for data retrieved
viaa TSF:

e Anapplication sends a request for accessing certain data to the GotAPI Server over the GotAPI-1.

e When the GotAPI Server receives the request, the GotAPI Server creates a hon-predictable random URI for the
binary data that is requested, and associates the URI with the binary data. The port number of the URI is not
necessarily 4035 or 4036. The GotAPI Server MAY decide the port number of the URI appropriately as needed.

e The GotAPI Server sends a response with the URI and additional information (if needed) to the application over the
GotAPI-1.

e Receiving the URI, the application accesses the URI in order to get the requested binary data from the GotAPI
Server. The GotAPI Server works as a Web server.

e The GotAPI Server discards the URI after the application gets the binary data and/or after certain while for the
purpose of security.

Example:

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 21 (81)

Application GotAPI Server

GotAPI-1 on HTTP

1. Sends a request to get a file

http://127.0.0.1:4035/gotapi/file?method=get

&target=mov.mp4&id=123 2. Creates a non-predictable random URI
for the file, then associates the URI to the
targeted file

3. Receives a JSON response from GotAPI Server

{

A

"uri”™: "http://127.0.0.1:4035/abc-def-123",
"id": 123
}

HTTP GET
4. Send a HTTP request to the URI for the targeted file

http://127.06.0.1:4835/abc-def-123

5. Reads the targeted file, then sends the

data to the app
6. Recieves the file data via HTTP |

The targeted data

@lelelelelel. .. 1

7. Discards the URI after the transuction

Figure 5: The TSF Procedure

The JSON data and some URIs in the diagram above are just sample code. What protocol/format is used for the GotAPI-1
depends on the GotAPI enabler implementation, and is out of the scope of this specification.GotAPI-2.

Though the example in the figure above shows thea case where HTTP is used, the GotAPI Server MAY use HTTP/2,
WebSocket, Server-Sent Events, and WebRTC as needed.

The TSF mechanism can be used for triggering communications using these protocols as well as transferring binary data. The
GotAPI Server MAY use the TSF mechanism for other types of data and triggering other protocols.

For example, if the GotAPI Server provides an API for enabling full-duplex real-time communications such as a chat service,
the GotAPI Server can use WebSocket instead of HTTP GET.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 22 (81)

Application GotAPI Server

GotAPI-1 on HTTP

1. Sends a request to get a file

http://127.0.0.1:4035/gotapi/groupchat?method=cpen

&room=mayclass 2. Creates a non-predictable random URI
for the Socket Server, then associates the
URI to the WebSocket Server

3. Receives a JSON response from GotAPI Server

{
"uri": "ws://127.0.0.1:4099/abc-def-123",

"id": 123 WebSocket Server
in the GotAPI Server

A

}

WebSocket
4. Connect to the WebSocket Server

ws://127.0.0.1:4099/abc-def-123

5. Establishes a WebSocket connection

6. Recieves a message via WebSocket

A

{ "from":"Bob", "data":"Hi, Alice." }

7. Recieves another message via WebSocket

A

{ "from":"Bob", "data":"How are you doing?" }

8. Sends a message via WebSocket

{ "data":"Hi everyone.™ }

Figure 6: WebSocket used for TSF

71.2.2.2 GotAPI-2

The GotAPI-2 interface enables applications to obtain authorization for access to GotAPI-based APIs. This interface is fully
specified by GotAPI, being a common (though optionally used) support function for all GotAPI-based APls. GotAPI-2
supports bindings and request/response transactions that can be utilized in host devices based upon the available interface
technologies. These options include the interface technologies TLS 1.2, HTTP/1.1, HTTP/2, and URI scheme handling.

The GotAPI-2 interface is based upon the concepts of OAuth, though with different semantics as necessary for adaptation to
the available interface technologies.

In this specification, an "origin" is an identifier of an application, which is globally unique.

o If the application is a web application, the origin is literally an origin as defined by RFC6454, which is a
concatenating string that is composed of the scheme, the fully qualified host name, and the TCP port number. For
example, if the URL of a web application is "https://app.example.com:443/index.html", the origin is
"https://app.example.com:443".If the application is an OS-specific native application, the origin is an application
identifier managed by the underlying OS, such as a package name. For example, if the OS is Android, the origin
could be "com.example.app".

e Ifthe application is a Hybrid Native/Web App, it is treated as an OS-specific native application by the underlying
OS. Therefore the origin is an application identifier managed by the underlying OS, such as a package name.

The origin is embedded in the HTTP request header by the application itself or by the web browser automatically as
described in the section “8.2 GotAPI Authorization Server”.

The authenticity of the origin of the application is crucial for the entire operation of the GotAPI system.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 23 (81)

The GotAPI Auth Server SHALL be able to extract the origin from the HTTP request header appropriately.

A) Basic GotAPI-2 Interface procedures:

The GotAPI-2 Interface must be able to run the steps as follows:

1)

2)

Authorization of application
The application sends an authorization request to the GotAPI Auth Server with the origin.

The GotAPI Auth Server MAY support a white-list of origins that have been pre-authenticated by the GotAPI
service provider. If the GotAPI Auth Server supports such a white-list and the origin is listed in the white-list, the
GotAPI Auth Server MAY determine if the application is acceptable or not.

If the GotAPI Auth Server accepts the application, the GotAPI Auth Server SHALL create a series of random digits,
called as “grant”, that is long enough not to be predicted, and, then, SHALL send the response to the application
with the grant.

Issuance of an access token

When the application receives the grant from the GotAPI Auth Server, it immediately sends an access token request
to the GotAPI Auth Server with the origin, the grant, and the scope which is a list of functions the application wants
to use. When the GotAPI Auth Server receives the request, the GotAPI Auth Server SHALL ask the user if the
application may use the requested scope (the list of functions). In practice, the GotAPI Auth Server shows an OS-
specific dialog box to the user.

The GotAPI Auth Server SHALL show the items in the dialog box as below:

0 The information of the application (e.g. the origin of the web application or the package name of the
OS-specific native application)

o0 The list of the functions which the application want to use (scope)
0 A button which the user presses if the user accepts the application
0 A button which the user presses if the user declines the application

If the user declines the request, the GotAPI Auth Server SHALL NOT allow the application to proceed any further
beyond the point.

When the GotAPI Auth Server accepts the request, the GotAPI Auth Server SHALL create an access token for the
application, which is a series of random digits that is long enough not to be predicted. Then the GotAPI Auth Server
SHALL send the response with the access token to the application.

The application subsequently sends API requests with the access token on the GotAPI-1 Interface.

B) Security enforced GotAPI-2 Interface procedures:

In addition to the basic GotAPI-2 Interface procedures as described above, there are two security concerns for the
GOtAPI-2 Interface that needs to be addressed.

1)

2)

GotAPI Auth Server spoofing, and
Application’s origin spoofing
GotAPI Auth Server spoofing:

The GotAPI Auth Server spoofing is an attack where a bogus GotAPI Auth Server takes over the genuine GotAPI
Auth Server and pretends as if it was the GotAPI Auth Server. When the application sends a request to the GotAPI
Server for the first time, there may even be a case where the GotAPI Server has already been taken over by the
attacker.

Since GotAPI Auth Server spoofing is an easy-to-do attack, applications need to be able to verify if the GotAPI
Auth Server is genuine or not. The HMAC server authentication resolves this spoofing attack.

The GotAPI Auth Server SHOULD be able to support the HMAC server authentication using the Trusted Channel
with the Application ID as described in the section 7.3.3.2

Application’s origin spoofing:

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 24 (81)

The application’s origin spoofing is an attack where a malicious application acts as other application by sending a
fake identity (a.k.a. origin) to the GotAPI Auth Server. The GotAPI Auth Server needs to be able to verify if the
identity that it has received from the application is authentic or not.

When an application sends a request for authentication over the GotAPI-2 Interface, the origin of the application is
included in the HTTP request header.

If the application is a web application running on a web browser, the application cannot override the Origin header
in the HTTP request header [W3C XHR]. Therefore, the origin coming from a web application is trustable.

On the other hand, if the application is an OS-specific native application, the application may send a fake identity in
the HTTP request header. Besides, a malicious native application may set the Origin header to be a fake origin
pretending a web application running on a web browser.

When an application sends a request for authentication, the GotAPI Auth Server SHOULD be able to verify the
origin coming from the application to determine if the origin is authentic or not.

The verification needs to depend on the features of the underlying OS domain on which the GotAPI Auth Server is
running.

Here is an example of such a verification mechanism if the underlying OS is Android.
An example of verifying origin spoofing on Android:

e Android supports the netstat command by default. But it does not provide the process ID of the native application
establishing the HTTP connection.

e Using Android NDK, however, the full-featured netstat can be built and packaged within an Android native
application (i.e., GotAPI Server application).

e The GotAPI Auth Server embedding the full-featured netstat identifies the process ID of the native application from
the result of the full-featured netstat, and it can get the package name and application name from the process ID
using the Android API.

e The GotAPI Auth Server uses a white-list of application names of legitimate browsers that have been verified to be
compliant to the origin header’s not-over-ridden requirements [W3C XHR]. The white-list enables the GotAPI Auth
Server to distinguish the case of (i) a web application declaring an origin from (ii) a malicious native application
fakes origin header to pretend a web application.

The Table below shows all the cases where an attacking native application, com.attacker.app, declares various origins in the
HTTP header and what the netstat can find. As shown in the table, the faked origins can be completely found by the netstat.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GOtAPI-V1_1-20151215-C Page 25 (81)

Real package Declared origin in True/Fake What netstat Results Notes
name HTTP header finds
1| com.attacker.app http://example.com Fake com.attacker.app Fake found *1
2| com.attacker.app com.example.app Fake com.attacker.app Fake found *2
3| com.attacker.app com.attacker.app True com.attacker.app | True confirmed *3

Table 6: Cases of origins declaration by attacking native application and what the netstat can find

*1: If the declaration of the origin was from a web application running in a legitimate browser, the netstat should have found
the name of the browser that is registered in the white-list of legitimate browsers, instead of the package name of the
attacking native application, com.attacker.app.

*2: The package name that the netstat has found is different from the origin that the application is declaring in the HTTP
header.

*3: GotAPI Auth Server confirms what the native application is declaring in the HTTP header is authentic.

The figure below shows the procedure of application authorization on the GotAPI-2 Interface including the security enforced
measures against the threats, GotAPI Auth Server spoofing, and application origin spoofing.

Application Genuine GotAP| Auth Server

Generate a key K|

<a href="intent://#intent;scheme=gotapi; -, . E

package=jp.docomo.gotapi; Invoke the server origin=htip://app example.jp Wake up origin=hitp:/fapp.example.jp
S.origin=app.example jp;S.key=0123456789;; (URI Scheme wi package name) key=0123456789 Trusted channel i Store the origin and the key key=0123456789
end">Invoke the GotAP| Server

Only the Genuine GotAP] Auth Server knows the key.
Create a request message m Bogus Server never knows the key.

nonce
Create a nonce m (A random digit series enough

long not to be predicted) IEI g;;??gae&;:ipooﬁng
onigin=hifp:/fapp.example.jp Check the origin by O3
dependent features
Determine if the origin is
acceptable or not

Request an app authorization

HTTP

Receive a grant g Create a grant Al © cowvr

igin=http://app.example jp, .
Request an access token ::,g _:n:mp:s:w _. "L Show a dialog to the user

Create an access token

cakuate antivac [AEECICAREI

Koo

Retum the access token
with the HMAC

Receive the response
with the HMAC

cacuatean i (IR CIAE)

Conquer the GotAFI Check if u ==ﬂ
Auth Server spoofing

Accept the access token

Figure 7: Procedure of security enforced application authorization on the GotAPI-2 Interface

In order to prevent GotAPI Auth Server spoofing and application’s origin spoofing, the GotAPI Auth Server SHOULD be
able to support the security enforced GotAPI-2 Interface procedures as described in Figure 7.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20150101-]

OMA-ER-GoOtAPI-V1_1-20151215-C Page 26 (81)

7.2.2.3 GotAPI-3

The GotAPI-3 interface enables the remote provisioning of APl access authorizations through a policy management function,
which may include one or more of:

e OMA Device Management, using a Managed Object (MO) defined by the GotAPI enabler [OMA DM]
e Animplementation-specific policy management service
Note: The GotAPI 1.0 does not specify the Managed Object (MO) for the GotAPI enabler.

71.2.2.4 GotAPI-4

The GotAPI-4 interface enables Extension Plug-Ins for external devices and internal enablers through which they
communicate with the GotAPI Server. Note that host-device-internal enablers/applications may also be connected to GotAPI
servers directly in implementation specific ways without using the GotAPI-4 interface and Extension Plug-Ins.

The Extension Plug-Ins are independent applications. They are the mediators between the GotAPI Server, and external
devices and internal enablers/applications. Typically, there are expected to be multiple Extension Plug-In applications
installed on a device by the user or preinstalled on the device. An Extension Plug-In application may be developed:

e For agroup of devices, e.g., a series of devices from a company, or a single device or an enabler,

e By adeveloper that is different from the provider of GotAPI or applications that use the devices or enablers through
the Extension Plug-In.

The GotAPI-4 interface provides the following functions with respect to Extension Plug-Ins:

1. Plug-In Discovery: GotAPI-4 Plug-In Discovery enables the GotAPI Server to discover the targeted Extension
Plug-In which an application wants to access and communicate with.

2. Service Discovery: GotAPI-4 Service Discovery enables the GotAPI Server to find all the services provided by an
Extension Plug-In. In this context, the "service" means an external device or a function provided by an internal
enabler through an Extension Plug-In. The Service Discovery provides not only the list of services but also the
availability of each service at the time.

3. Approval: GotAPI-4 Approval is the function to ensure security, especially to protect users’ data and privacy from
unwanted exploits, so that the users can safely use the application with external devices and enablers that are
connected via Extension Plug-Ins.

4. Data Forwarding: GotAPI-4 Data Forwarding is the function that enables an application to communicate with the
targeted Extension Plug-In through the GotAPI Server. Data Forwarding takes place after Plug-In Discovery
(optional) and Approval processes have been successfully completed. GotAPI-4 Data Forwarding uses the “pass-
through” mechanism, so that the application can access and communicate with the APIs that (i) are implemented in
the Extension Plug-In and (ii) expose the features of the external devices or internal enablers.

Note that the APIs to be implemented in Extension Plug-Ins that expose features of external devices and internal
enablers are out of the scope of this specification.

72241 Plug-In Discovery

When applications use Extension Plug-Ins through the GotAPI Server, the GotAPI Server has to know what Extension Plug-
Ins are installed. This section describes how the GotAPI Server discovers the installed Extension Plug-Ins in the local devices.

Therefore:
e The GotAPI SHALL support the Plug-In Discovery if GotAPI-4 is supported.
e The GotAPI Server SHALL support a mechanism to know what Plug-Ins are installed in the local device.

To discover the installed Extension Plug-Ins, the GotAPI Server has to use OS-specific mechanisms and functions. Regarding
Android, see the section "Appendix F. Finding the installed Plug-Ins for Android".

Note: how the GotAPI Server discovers Extension Plug-Ins is out of the scope of this specification.

How to ensure that Extension Plug-Ins on an OS from different vendors are able to be discovered by a GotAPI Server
implementation is the responsibility of the provider of the GotAPI Server implementation.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 27 (81)

7.2.2.4.2 Service Discovery

In many cases, one Extension Plug-In is associated with one external device. Some Extension Plug-Ins are associated with
multiple external devices. Some Extension Plug-Ins provide functions that work in the local device but is not associated with
any external device (a.k.a. an internal enabler itself). Such external devices or functions are called "services".

When an application wants to use a service, it needs to specify the identifier of the service rather than the Extension Plug-In
that is supporting the service. Applications basically don't care about what Extension Plug-In is associated with the service.

The Service Discovery enables applications to find services. Some applications, however, may be pre-programmed with
specific services. Others may want to find what services are available.

Therefore:
e The use of the Service Discovery is OPTIONAL for applications wishing to use services.
o The GotAPI SHALL support the Service Discovery if the GotAPI-4 is supported.

e The GotAPI-1 SHALL support the Requests and Responses for the Service Discovery if GotAPI-4 is supported.
This is to ensure consistent interface for application developers.

e GoOtAPI-4 SHALL support the protocol (the data container format) between the GotAPI Server and the Extension
Plug-Ins. This is to ensure consistent interface for Extension Plug-In developers.

Example of Service Discovery

The following example is based on an implementation on Android.

Application GotAPI Server Plug-In

GotAPI-1 (HTTP/REST) GotAPI-4 (Intent)

The Plug-In finds the status of the

Request Service Discovery . corresponding external devices

> - (services)
Send exgllclt Intents to all the F‘Iug-lns |
eam— I
f—— [{] Extemal
Pass through the results The list of the services L~ devices
The list of the services as one response ¢ Service 1 (online),

* Service 2 (offline),

e - Service 1 (online), * Service 3 (online)

* Service 2 (offline),
* Service 3 (online)

Send an explicit Intent

If there are multiple Plug-Ins, each
Returns the result as one consolidated Plug-In sends an explicit Intent
response even if there are multiple Plug-Ins asynchronously

Figure 8: The procedure of the Service Discovery

Terminology:

e Explicit Intents are Intents with a specific application identifier, enabling the sending application to specify the
exact receiving application to be run.

Description of operation:
General operation:

(1) When the GotAPI Server has received a Service Discovery request from an application over the GotAPI-1 interface,
the GotAPI Server sends a Service Discovery Command to each of the installed Extension Plug-Ins using the
protocol (the data container format) of GotAPI-4 over an Explicit Intent. Note: The Plug-In Discovery has already
found Extension Plug-Ins that are installed on the device.

(2) When an Extension Plug-In receives a Service Discovery Command from the GotAPI Server, the Extension Plug-In
checks the availability of the service that is requested by the Service Discovery. When the Extension Plug-In

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 28 (81)

completes checking the availability of the service, the Extension Plug-In sends a response to the GotAPI Server over
an Explicit Intent.

(3) When the GotAPI Server has received responses from all of the Extension Plug-Ins, the GotAPI Server returns the
result to the application as one response.

Multiple plug-ins and asynchronous responses:

Since there can be multiple Extension Plug-Ins installed on the device, each response is sent to the GotAPI Server
asynchronously.

White List:

When an Extension Plug-In sends a response, it uses an Explicit Intent to the pre-defined GotAPI Server that is listed in the
White List. The White List is provided in each Extension Plug-In by the provider of the Extension Plug-In. The White List
enables Extension Plug-Ins to send responses only to the GotAPI Server applications that are listed in the list and prevents
Extension Plug-Ins from sending responses to unknown GotAPI Servers. This is to disable spoofed GotAPI Servers to use
Extension Plug-Ins.

Consolidated response from GotAPI Server:

After consolidating the responses that are sent from multiple Extension Plug-Ins asynchronously, the GotAPI Server sends a
response to the originating application with the information that are received from the Extension Plug-Ins.

Stateless:

The GotAPI Server itself does not keep the status of the services that are discovered by the Service Discovery Command,
keeping GotAPI Server stateless in terms of services. It is the sole responsibility of the applications that have received the
service status information how to keep or use it.

Note: As described in the Plug-In Discovery section, the GotAPI Server must keep the up-to-date status of the Extension
Plug-Ins that are installed on the device.

7.2.2.4.3 Approval

After an application is registered by the GotAPI Authentication Server through user permission, the application is eligible for
accessing Services provided by Plug-Ins. To ensure protecting user’s data and privacy, however, before the user is able to
access the Services via the Plug-In using the application, the user shall be able to authorize the application to access the Plug-
In and the Service. To enable this requirement:

e The application SHOULD be authorized to access the Service via the Plug-In by the user.

e The GotAPI-1 SHALL support the Requests and Responses for authorization for an application to access the Service
via the Plug-In via user authorization. This is to ensure consistent interface for application developers.

e The GotAPI-1 SHALL support the Requests and Responses for authorization for an application to access the Service
via the Plug-In via user authorization if GotAPI-4 is supported

The authorization mechanism for Services and Plug-Ins over the GotAPI-4, based on an implementation on Android consists
of the following steps:

Plug-In Service API Access Request: Typically after the application performing Service Discovery to get the information of
the available Services via installed Plug-Ins, the application requests a Plug-In Service API Access Request to the GotAPI
Server over the GotAPI-1 interface.

Application Registration to Plug-Ins: If the request is made for the first time, the GotAPI Server requests Application
Registration to the targeted Plug-In over the GotAPI-4 with the origin of the application. Then the Plug-In registers the
application and creates a clientld which is an identifier of the application managed by the Plug-In.

Clientld and White List: The Plug-In returns the clientld to the GotAPI Server over the GotAPI-4 interface, using an
Explicit Intent. The Explicit Intent with the White List in the Plug-In disables providing a clientld to a spoofed GotAPI
Server (the same mechanism as in the Plug-In Discovery).

Access Token and User Authorization: The GotAPI Server requests an access token with the clientld and the serviceld
provided by the application over the GotAPI-1 Interface. Upon receiving the access token request, the Plug-In pops up a
dialog box to the user, which prompts the user to select the permission for the Service provided by the Plug-In. If the user

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 29 (81)

permits the access request, the Plug-In creates an access token and returns it to the GotAPI Server. Note that an access token
is used only between the GotAPI Server and Plug-Ins over the GotAPI-4 interface.

Accessing API using access token: When the GotAPI Server receives the access token from the Plug-In, the GotAPI Server
passes the Plug-In Service API Access Request from the application to the Plug-In over GotAPI-4 with the access token.
When the GotAPI Server receives the response form the Plug-In, the GotAPI Server passes the response from the Plug-In to
the application over the GotAPI-1 interface.

Reusable access token and life time: Once the GotAPI Server receives an access token for an application, the GotAPI
Server doesn't need to request another Application Registration or an access token as long as the requested Service is the
same. The GotAPI Server can continue using the same access token for a while as long as the Plug-In accepts the access
token. An access tokens is given a life time, so that the same access token can be used before the life time is expires. After
the life time is expired, the GotAPI Server must request another access token using the same procedure.

Application GotAPI Server Plug-In User
GotAPI-1 (HTTP/REST) GotAPI-4 (Intent)
serviceld
Request an API access profile
to the Service provided attribute
by the Plug-In
Request app registration package
- “| Register the app
Retuen the client_id clientld Create an clinetld
This procedure is needed for the icald
first request of the specified 1 Solvice o R t for Permissi
Service provided by the Plug-In Request an access token clientld i s s

Return the access token accessToken
Create an access token for

the access to the specified

serviceld Service (the external device)
c'f'i;:lt;d The access token is used only
(Eas: between the GotAPI Server and

Pass through the request attribute the Plug-In

for the APl access accessToken

Pass through the result
Check the access token
for the APl access Return the result for the API access

Figure 9: Service and Plug-In Approval

The parameters (e.g. profile, attribute, etc.) in the diagram above are simplified examples. See the section “8.3 GotAPI
Server” for the exact definition of the data set.

7.2.24.4 Data Forwarding

Once a connection between the GotAPI Server and the targeted Extension Plug-In is established (i.e., GotAPI-4 Plug-In
Discovery (optional) and GotAPI-4 Approval have been successfully completed), the application can communicate with the
targeted Extension Plug-In. The data transferred between the application and the Extension Plug-In pass-through the GotAPI
Server.

The GotAPI-4 Data Forwarding defines the protocol (the data container format) between the GotAPI Server and the
Extension Plug-Ins that are connected with external devices or internal enablers.

Example:
The following description and Figure-7 show how the pass-through mechanism of the Data Forwarding works:

An application sends a request to the GotAPI Server using an HTTP connection with some parameters in accordance with the
GotAPI-1. The GotAPI Server converts the request to the data format (protocol) in accordance with the GotAPI-4 Data
Forwarding specification. Then the GotAPI Server conveys the converted data to the targeted Extension Plug-in using the OS
adaptation, such as Intent for Android. Finally, the Extension Plug-In invokes the APIs with the received and re-converted
data. The APIs are implemented in the Extension Plug-In. This mechanism allows requests and responses between
applications and external or internal entities to be passed-through to the APIs.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GotAPI-V1_1-20151215-C

Page 30 (81)

Application

Sends a HTTP request

GotAPI Server

Plug-In

Passes the request

<

PUT Action: "....PUT",
http://127.8.0.1:4035/gotapi/health/thermometer {"requestCode": 18,
?servield=org.example.devl "profile" : "health",
&accessToken=xxxxx "attribute” : "thermometer”, ...}
L Passes the result | Returns the result
< <
Content-Type: application/json Action: "....RESPONSE",

{"result": e, ...}

Pass-Through

HTTP/GotAPI-1

Passes the result

{"requestCode": 18, "result": o, ...}

Reports an asynchronous message

<

al

{"serviceId": "org.example.devl",

Action: "....EVENT",

“thermometer": {"temperature": 36.4, ...}, {"requestCode": 18,
..} “"thermometer": {"temperature": 36.4, ...},
.}
Passes the result Reports an asynchronous message
{"serviceld": "org.example.devl",) Action: "....EVENT",

"thermometer":

..}

{"temperature": 36.4, ..

'}J

Pass-Thr
WebSocket/GotAPI-5

Figure 10: Pass-through mecha

{"requestCode": 10,
"thermometer": {"temperature": 36.4, ...

..}

}J

ough
Intent/GotAPI-4

nism of Data Forwarding

If the GotAPI Server receives a message from the Extension Plug-In in response to a request from the application on the
GotAPI-1 Interface, the GotAPI Server SHALL pass the message to the application on the GotAPI-1 Interface. If the GotAPI
Server receives a message from the Extension Plug-In in response to a request for an asynchronous messaging API, the
GotAPI Server SHALL pass the message to the application on the GotAPI-5 Interface (WebSocket connection).

The JSON data and some URIs in the diagram above are just samples and simplified. See the section "8.3 GotAPI Server" for
the exact definition of the data set.

In order to get data (binary files, streaming, event notifications, etc.) using HTTP or a different protocol, e.g., WebSocket,
Server-Sent Events , WebRTC, from the Plug-Ins, the Temporary Server Feed (TSF) mechanism may be used:

An application sends a request to the GotAPI Server over the GotAPI-1 interface.

The GotAPI Server passes the request to the Plug-In over the GotAPI-4 interface.

When the Plug-In receives the request, the Plug-In creates a non-predictable random URI for the data that is
requested, and associates the URI with the data.

The Plug-In sends a response with the URI and additional information (if needed) to the GotAPI Server over the
GotAPI-4 interface, and the GotAPI Server passes the response to the application over the GotAPI-1 interface.

Receiving the URI, the application accesses the URI using the protocol that is indicated by the Plug-In in order to
get the requested data from the Plug-In directly. The Plug-In works as a Web server.

The Plug-In discards the URI after the application gets the data or a preset life time expires for the purpose of
security.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GotAPI-V1_1-20151215-C

Page 31 (81)

e The URI may use the same IP address as the GotAPI Server but with a different port number. This enables the Plug-
In to be a separate application than the GotAPI Server application.

Application GotAPI Server

GotAPI-1 on HTTP

GotAPI-4 on Intent

1. Sends a request to the Plug{in for taking a picture

External device

Plug-In

Sends a request to the external device for taking
a picture, then gets the binary data of the picture

or other enabler

» »

3. Receives a JSON response |from the Plug-in

{
"serviceld": "org.example.p.de2",
"profile” : “camera",
"attribute”: “"takePicture”,
"config" : { "delay": @ },

}

Take a picture

2. Creates a non-predictable random URI
for the file, then associates the URI to the
targeted data

(e.x. http://1127.0.0.1:9999/abc-def-123)

{

“result”: @
“url”

+

HTTP GET

: "http://127.8.8.1:9999/abc-def-123"

4. Send a HTTP request to the URI for the targeted data

http://127.8.6.1:5999/abc-def-123

6. Recieves the data via HTTP

-

5. Sends the data to the app < Targeted data

elelelelelel...

Uses the same IP address but a
different port number/ different
application

7. Discards the URI after the transuction

T
Plug-In works as a HTTP server

Figure 11: The TSF mechanism for GotAPI-4

The JSON in the diagram above are simplified examples. See the section “8.3 GotAPI Server” for the exact definition of the

data set.

The example in the figure below shows how the Plug-in can use WebSocket for the TSF mechanism. WebSocket allows the
Plug-in to push asynchronous real-time event notifications fired by the external device to the application, and to accept

commands from the application.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GotAPI-V1_1-20151215-C

Page 32 (81)

Application GotAPI Server Plug-In

GotAPI-1 on HTTP GotAPI-4 on Intent

1. Sends a request to the Plug{In fortaking a picture

Sends a request tothe external device for
monitoring the user'sweight

External device
or other enabler

start o measure

{ <
"serviceld": "org.example_p.dez2", I~
"profile” : "weight",
"attribute": "monitor",
"unit" : ke 2. Creates anon-predictable random URI
T (ex http//127.0.0.1:999%abc-def-123)

3 Receives a JSON response Jfrom the Plug-In

{

"result": @,

“url” : "ws:/f/127.0.0.1:4099/abc-def-123"
¥
WebSocket

4. Connect fo the WebSocket Server

WebSocket Server
in the Plug-In

ws://127.0.0.1:4099/abc-def-123

5. Establishes a WebSocket connection

6. Recieves a message via WebSocket

A

{ "data":83 }

7_Recieves another message via WebSocket

Y

F 3

{ "data":85 }

8. Sends a message via WebSocket

{ "unit":"1b" }

Figure 12: WebSocket used for the TSF

7.2.2.5 GotAPI-5

The GotAPI-5 interface enables applications to listen to asynchronous messages from Extension-Plug-Ins via the GotAPI

Server using WebSockets.

After the application obtains authorization to access GotAPI-based APIs using the GotAPI-2 Interface and completes the
Service Discovery, the application can use the asynchronous messaging service provided by the Plug-In through the GotAPI

Server.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 33 (81)

Application GotAPI Server Thermometer Plug-In
(1) Sends a HTTP request to start monitoring _| (2) Passes the request R
PUT Action: "....PUT", T
http://127.9.8.1:4035/gotapi/health/thermometer {"requestCode": 18,
?servield=org.example.devl "profile" : "health”,
&accessToken=xxxxx "attribute" : "thermometer", ...}

Plug-In Approval procedure (if needed)

I Connects to the targeted device if needed

L, (4) Passes the result (3) Returns the result

<+ — + Starts to report
Content-Type: application/json Action: “....RESPONSE",

{"result”: o, ...} {"requestCode": 10, "result": @, ...}

HTTP/GotAPI-1

(5) Establishes a WebSocket connection if needed

ws://127.0.0.1:4035/gotapi/websocket

J The access token is a token provided by the
(G] Sends the access token /é._\ GotAPI Auth Server previously.

>

{"accessToken": "abcdef@12345"}

(7) Returns the result

‘{“result“: 9, ...}

(9) Passes the result | (8) Reports the change of measurement value

+ Detect the measurement value
{"serviceId": "org.example.devl, Action: "....EVENT",
“thermometer"”: {"temperature": 36.4, ...}, {"requestCode": 18,
"thermometer": {"temperature": 36.4, ...},
WebSocket/GotAPI-5 Intent/GotAPI-4
Application GOtAPI| Server Thermometer Plug-In
(10) Sends a HTTP request to stop monitoring (11) Request to stop monitoring
> » stops to report
DELETE Action: "....DELETE,
http://127.0.0.1:4035/gotapi/health/thermometer {"requestCode": 1@,
?servield=org.example.devl “profile" : "health",
&accessToken=xxxxx "attribute" : "thermometer", ...}
" (13) Passes the result (12) Returns the result
‘Content-Type: application/json B Action: "....RESPONSE",
{"result": o, ...} {"requestCode": 18, "result": @, ...}
HTTP/GotAPI-1 Intent/GotAPI-4

| Closes the WebSocket connection |

Figure 13: Procedure of establishing a WebSocket connection for the GotAPI-5 interface
1. The user triggers a request of the API on the application.

2. Label (1): The application sends a request to the GotAPI Server using HTTP (REST) using the GotAPI-1 Interface.
Note that the HTTP method of the request is "PUT".

3. Label (2): The GotAPI Server passes the request to the targeted Plug-In on the GotAPI-4 interface with the Action name
"PUT".

4. The GotAPI Server runs the Plug-In Approval procedure if needed, which is defined in this specification.
5. When the Plug-In receives the request, it connects to the targeted external device if needed.

6. Label (3): The Plug-In sends a response with the message using the GotAPI-4 interface.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 34 (81)

7. Label (4): When the GotAPI Server receives the response from the Plug-In, the GotAPI Server passes the response to
the application on the HTTP connection as an HTTP response.

8. Label (5): The application establishes a WebSocket connection to the GotAPI Server if the application does not have a
WebSocket connection to the GotAPI Server.

9. Label (6): As the WebSocket connection has been established, the application sends the access token to the GotAPI
Server through the WebSocket connection. The access token is a token which the application obtained from the GotAPI
Auth Server when the application was authorized by the GotAPI Auth Server.

10. Label (7): When the GotAPI Server receives the access token from the WebSocket channel, the GotAPI Server returns
the result on whether the request is accepted or not.

11. Label (8): Whenever the targeted external device reports a message, e.g., a data or a measurement value, the Plug-In
sends the message to the GotAPI Server on the GotAPI-4 Interface with the Action name "PUT".

12. Label (9): Whenever the GotAPI Server receives a message from the Plug-In, the GotAPI Server passes it to the
application on the WebSocket connection.

13. Label (10): When the application finishes or decides to finish using the service, it sends a request to stop the monitoring
to the GotAPI Server. The request is sent over the GotAPI-1 Interface using HTTP. Note that the URI is as the same as
that of the first request except that the HTTP method is "DELETE".

14. Label (11): When the GotAPI Server receives the stop request, it sends a request to the Plug-In to stop the monitoring
with the Action name "DELETE". Then the GotAPI server closes the WebSocket connection.

15. Label (12): When the Plug-In receives the stop request from the GotAPI Server, the Plug-In stops reporting messages,
and it returns a response to the GotAPI Server on the GotAPI-4 Interface.

16. Label (13): When the GotAPI Server receives the response, the GotAPI Server passes the response to the application on
the GotAPI-1 Interface.

The diagram above shows that the application establishes a WebSocket connection as the GotAPI-5 interface after the
application sends an API request on the GotAPI-1 interface. But the application can establish a WebSocket connection at any
time after the application has received an access token from the GotAPI Auth Server.

The GotAPI-5 interface is NOT on a per API request basis. It is on a per application basis. That is, the application uses a
single WebSocket connection for asynchronous messages derived from any API requests.

Application GotAPI Server Plug-In A Plug-In B
An API request to Plug-In A

>
> >

An API request to Plug-In B

HTTP/GotAPI-1

A WebSocket connection
-————————————————

A

<
ad

Y

WebSocket/GotAPI-5 Intent/GotAPI-4

Figure 14: Common use of a single WebSocket connection for multiple APIs

The GotAPI Server SHOULD listen to WebSocket connections on TCP port 4035 as ws: scheme or 4036 as wss: scheme,
which is same as the GotAPI-1 Interface (HTTP).

If the GotAPI Server can not listen to WebSocket connections on TCP port 4035 or 4036, it MAY listen WebSocket
connections on an arbitrary TCP port which is pre-defined by the GotAPI Server.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 35 (81)

Editor's note:

Assigning a different port number for a WebSocket connection from that of the GotAPI-1 Interface, I'm not sure that the
GotAPI Server spoofing for the WebSocket channel and the application spoofing can be caused.

Editor's note:

NanoHttpd already includes a WebSocket server and implementation of a WebSocket server on the same port as the
HTTP channel is straightforward.

https://github.com/NanoHttpd/nanohttpd

But in case where implementing a WebSocket server as a single application with the HTTP server is not possible, it is
not possible to get the same port number assigned for the HTTP channel and the WebSocket channel. Thus, we have
made it as a “SHOULD” requirement.

7.3 Security Considerations
7.3.1 Authorization

GotAPI may be used to expose APIs which provide access to sensitive device functions or data. This presents a risk of
exposure of device functions and data without informing the user or obtaining consent, or from rogue applications that seek
to fraudulently access GotAPI based APls. Note that whether a specific GotAPI based API is considered to expose sensitive
functions or data must be clarified by the specification for the GotAPI based API. The following requirements are intended to
address the general risk of unauthorized access to GotAPI based APIs:

e If sensitive functions or data are exposed by a GotAPI based API, the GotAPI Server SHALL verify API access
permission for the specific application, before providing API service.

o GotAPI Servers SHALL provide at least one means of managing APl access permissions, including one or more of:

0 Permissions that are remotely managed via OMA Device Management [OMA DM] using the GotAPI
Permissions managed object [GotAPl MO]

0 Permissions that are remotely managed via implementation-specific means
o0 Permissions that are managed by the user through GotAPI Authorization Server user interfaces
GotAPI Servers SHALL support access permissions granted on a variety of bases, including:
e Free access, i.e. no permission required
e Global access, meaning that once access is granted to any device or application, all further requests are allowed

e Device-specific access, meaning that access is authorized on a per-device basis, including local device access,
subnet-based access (e.g. to enable access by any device in a private network), or specific devices by source IP
address

e Application-specific access, meaning that access is authorized for each application which can be reliably identified
using:

o For web-based applications, the HTTP Origin header

o For native applications and Hybrid Native/Web Apps, an application identifier as specific to the native
platform

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20150101-1

https://github.com/NanoHttpd/nanohttpd

OMA-ER-GoOtAPI-V1_1-20151215-C Page 36 (81)

7.3.2 Confidentialty and Integrity

GotAPI is intended to support securely-exposed APIs to help ensure confidentiality and integrity of API operations when
needed. When protected by transport layer security (e.g. TLS 1.2), GotAPI based APIs require consideration of the following
potential issues:

e GotAPI Servers are unlikely to be provisionable with server certificates that can be validated by clients. For APIs
exposed over TLS, this will likely result at least in certificate warnings at the client, and possibly failure of the client
to connect to the GotAPI Server.

Other means of ensuring confidentiality and integrity of APl operations may also be supported, such as API request/response
payload encryption based upon pre-shared or dynamically established encryption keys.

7.3.2.1 Confidentiality

Depending on the underlying platforms or UAs, there are cases where confidentiality protection is already granted. For such
cases, there is no need to support this requirement. If, however, the underlying mechanisms do not support data
confidentiality protection, this requirement should be supported. To support message confidentiality (1) transport encryption,
e.g., TLS/SSL, or (2) end-to-end encryption are available. But transport encryption e.g., TLS/SSL, has some issues applying
to the GotAPI environments. For end-to-end encryption, the encryption keys may be distributed through the Trusted Channel
as defined in section 7.3.3.3.

7.3.2.2 Integrity

Depending on the underlying platforms or UAs, there are cases where integrity protection is already granted. For such cases,
there is no need to support integrity requirement by the GotAPI enabler. If, however, the underlying mechanisms do not
support integrity protection, this requirement should be supported.

In case where message integrity check is needed depending on the OS, the UA or the environment, HMAC message
authentication can be used. The HMAC server authentication that is defined in 7.3.3 is optimized only for server
authentication, not including message authentication. In order to apply HMAC for message integrity check as well as server
authentication, an HMAC needs (i) to incorporate both the message and the nonce, and (ii) to be generated, sent and verified
in both ways symmetrically.

7.3.3 Immunity from Attack
7.3.3.1 Traffic based attack

Since it exposes a service on host devices, the GotAPI enabler by nature consumes device resources in handling service
requests. This presents a risk if the GotAPI Server and the GotAPI Auth Server are not adequately protected from rogue
applications that may launch intrusion or denial-of-service (DOS) attacks on the host device, which may cause GotAPI host
device instability, unusability, or excessive resource consumption (e.g. battery). Such attacks can involve excessive API
requests or malformed API requests. The following requirements are intended to address these risks:

o GotAPI Servers and GotAPI Auth Servers SHALL limit API request volume to an unspecified maximum rate, in
order to limit exposure to DOS attacks. GotAPI Servers and GotAPI Auth Servers SHALL temporarily disable API
permissions for applications that are suspected of excessive API requests.

o GoOtAPI Servers and GotAPI Auth Servers SHALL ensure the validity of API requests prior to processing them.
GotAPI Servers and GotAPI Auth Servers SHALL temporarily disable API permissions for applications that are
suspected of sending maliciously malformed API requests.

GotAPI Servers and GotAPI Auth Servers SHALL provide a means for users to be informed of applications that have been
suspended from API access due to suspected security violations, and a means to re-authorize API access for those
applications.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 37 (81)

7.3.3.2 Server spoofing attack

If the underling operating system allows for an application to kill other applications that are running in the background , it is
possible for a bogus application to spoof the genuine GotAPI Server or GotAPI Auth Server, and provide fake or harmful
information to the application. An attack can be made by 1) terminating the running GotAPI Server and 2) taking over the
port that the Server been listening to. If this attack is made, the application that is communicating only through the port, has
no way to know that the Server is spoofed. This type of attack is called the server spoofing attack. To prevent this attack,
applications must be able to authenticate the Server that they are communicating with.

There are two approaches possible to enable such authentication of the genuine Server.
(1) Approaches not to embed any credentials in the GotAPI application, and
(2) Approaches to embed credentials in the GotAPI application

The first approach is based on the trust that may be provided by the operating system and/or the application market
ecosystem. Many application market ecosystems provide an Application ID for an application that is guaranteed to be unique
in the ecosystem including the operating system and the devices. An Application ID may be used for the trust of the GotAPI
application for the authenticity. This approach, however, may be a solution depending on the operating system.

The second approach is based on the credential embedded in the application as the trust. It typically requires an external
server to verify the authenticity of the credential of the Server for the application. The challenge of this approach is how to
protect the credential that is embedded in GotAPI applications from attackers who are able to reverse engineer the
applications. If the same credential is embedded in all the application packages and distributed to many devices and if the
credential is compromised on one of the devices, all the devices implementing the application would be compromised.

7.3.3.3 HMAC server authentication using trusted Application ID for the Server
spoofing attack

This counter measure works for a platform and a UA that satisfy the following requirements. This is based on the trust
provided by the Application ID of the native application, and not embedding any credentials in the GotAPI native application.

e The Application ID is unique and trusted, which is guaranteed by the platform.

e The execution environment, e.g., UA, provides a one-way channel for an application to connect directly and send
messages to a native application by designating its Application ID, e.g. a URI scheme.

e The application can be connected exclusively and securely with a native application by designating its Application
ID. Namely, there is no eavesdropping, no man-in-the-middle, or no spoofed destination in the channel from the
application to the destination native application.

We call this type of channel as “Trusted Channel”.

Note: Intent URI Scheme for qualified browsers on Android and Explicit intents for Android native application satisfy all
these requirements. The destination is designated by the package name of the native application to which applications
attempts to send messages.

Other assumptions are:
e The HTTP channel may be eavesdropped (*).

e Any application can terminate other applications that are running in the background and take over the port that the
application is listening to.

e The application knows the Application ID of the genuine GotAPI application, implementing both the GotAPI Server
and the GotAPI Auth Server. The Application ID is provided to the application out of the band in a trusted manner.

Note: It has been shown that eavesdropping is not possible over the GotAPI-1 or the GotAPI-2 HTTP interfaces on Android
unless the device is rooted. Nonetheless, this assumption is introduced here because there may be a way for eavesdropping
the HTTP connection that we are not aware of.

If the Trusted Channel is available, the Server spoofing attack is prevented using the HMAC server authentication as follows:
Shared key distribution using the Trusted Channel:

1. The application generates a key, K, composed of unpredictable random characters, and stores the key securely.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GOtAPI-V1_1-20151215-C Page 38 (81)

2. The application sends the key, K, to the genuine rServer through the Trusted Channel designating the Application ID of
the genuine GotAPI application. The application knows the genuine GotAPI application’s Application ID in an out-of-
band trusted channel.

3. The genuine GotAPI application stores the key securely.
HMAC calculation and sending messages through the GotAPI-1 or the GotAPI-2 Interface:

1. Before the application sends a request, it creates a nonce, N, which is a series of random digits that is long enough not to
be predicted, and, then, it sends the message, M, and the nonce, N, through the GotAPI-1 or the GotAPI-2 Interface.

2. When the genuine Server receives the request, it calculates an HMAC, h'=HMAC (K, N), with the nonce, N, and the key,
K, that the application distributed through the Trusted Channel before.

3. The genuine Server sends a response with the HMAC, h', and the response message, m, to the application through the
GotAPI-1 or the GotAPI-2 interface.

4. The application calculates an HMAC, H=HMAC (K, N), and it checks if H' is equal to h' that is received from the
GotAPI Server. If equal, verification of the Server authentication is successful and the application verifies that the
response has surely been sent by the genuine Server. If not, application determines that the Server that sent the message
is spoofed.

The figure below presents a normal case of the HMAC server authentication for the GotAPI Server (the GotAPI Auth Sever
case is the same) for a web application.

Web Application Genuine GotAP| Server

The web application sends a key (K) whenever it
starts. It can update the key (K) anytime after that.

<=a href="intent:/#Intent,scheme=gotapi;
package=jp.docomo.gotapi;
S.origin=app.example jp; S.key=0123456789;;
end"=Invoke the GotAP| Server</a=

origin=app.example.jp > Wake up origin=app.example.jp
Key=0123456768 Trusted channel key=0123456789

Only the Genuine GotAP| Server knows the key.
Bogus Server never knows the key

nonce
(A random digit series enough
ong not to be predicted)

onigin=app.example.jp, E H M Execute the API request
message=M Create a result message

The web application creates a
new nonce every time it sends a
request to the GotAPI Server

Figure 15: HMAC server authentication — Normal Case

(a web application communicating with the GotAPI Server over GotAPI-1)

The Figure 10 presents a spoofing attack case of the HMAC server authentication, where a web application is communicating
with the GotAPI Server over GotAPI-1. The same flows apply to the case of a web application is communicating with the
GOtAPI Auth Server.

When a bogus server attempts to spoof the genuine GotAPI Server, the bogus server can't calculate a right HMAC because it
never knows the key, K, generated by the application.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20150101-]

OMA-ER-GOtAPI-V1_1-20151215-C Page 39 (81)

Web Application Genuine GotAPI Server

<a href="intent:/i#Intent:scheme=gotapi; B _
package=jp.docomo, gotapi; ofigin=app.example jp » origin=app.example._jp
S.origin=app.example.jp;5 key=0123456780:; key=0123456789 Trusted channel key=0123456789

end">Invoke the GotAdP| Server</a=

Only the Genuine GotAP| Server knows the key
Bogus Server never knows the key.

nonce
m (A random digit series enough BOQUS Server
long not to be predicted)

origin=app.example jp, IE E

message=M

- ~ Bogus Server can't calculate a right HMAC,
culate 2 C i = . N
Calculate an HMA ' | HMAC(|k 'E] because it never knows the key

[v] [m]
Return the result message

with the HMAC

cacuateanivac [RRETSICANEL

Don't accept the response

Figure 16: HMAC server authentication — Spoofing Attack Case

(a web application communicating with the GotAPI Server over GotAPI-1)

Since GotAPI Server spoofing is an easy-to-do attack, the GotAPI enabler needs to protect it from the attack.

If the Trusted Channel is available in the device from the application to the genuine Servers, the GotAPI Server and
the GotAPI Auth Server SHOULD support the HMAC server authentication described in this section to prevent the
Server spoofing attack.

If the HMAC server authentication is supported, the GotAPI Server and the GotAPI Auth Server SHALL support
SHA-256 for the hash algorithm to calculate an HMAC.

The GotAPI Server and the GotAPI Auth Server SHALL be able to support and respond to the application
regardless of the application being using the HMAC server authentication or not. But the GotAPI Server SHALL
NOT respond to applications which have not been authenticated by the GotAPI Auth Server through the GotAPI-2

Interface.

The GotAPI Server and the GotAPI Auth Server SHALL accept keys sent by applications anytime through the
Trusted Channel. The GotAPI Server and the GotAPI Auth Server SHALL calculate an HMAC using the new key
that was most recently provided from the application.

Recommendations for applications (non-normative)

The use of the HMAC server authentication is OPTIONAL for an application.
An application SHALL generate a new key, K, and use it whenever the application is invoked.

An application SHALL create a new nonce every time it sends a request to the GotAPI Server.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20150101-]

OMA-ER-GoOtAPI-V1_1-20151215-C Page 40 (81)

8. Technical Specifications
8.1 Common APIs for GotAPI applications

In practice, a GotAPI Server and a GotAPI Auth Server are implemented as a single application which is called as a "GotAPI
application™.

Applications (web applications running on web browsers or OS-specific native applications) have to check if the GotAPI
application is alive, then applications have to invoke the GotAPI application if these servers are not running (i.e. if the
GotAPI application is not running).

This section defines the Availability APl and the way to invoke GotAPI applications.

8.1.1 Availability APl on the GotAPI-1 Interface

This API provides the status whether the GotAPI application, consisting of the GotAPI Server and the GotAPI Auth Server,
is running or not. The application s (web applications running on web browserss or OS-specific native applications) use this
API before the application authorization on the GotAPI-2 Interface. The GotAPI Server and the GotAPI Auth Server SHALL
accept and respond to the requests for this API coming from any application even if the application authorization on the
GotAPI-2 Interface has not been completed.

Definition of the request

Method HTTP GET (REST)

Request URL http://127.0.0.1:4035/gotapi/availability

https://127.0.0.1:4036/gotapi/availability

Parameters none

If the GotAPI application is running, the GotAPI Server and the GotAPI Auth Server SHALL respond as follows:

Definition of the response

MIME-Type application/json

HTTP status 200 OK

Definition of the response

result Number This must be 0. Mandatory

Example of the response
{

"result":0

}

The GotAPI Server and the GotAPI Auth Server SHALL NOT add any extra information in the response for the purpose of
protecting the user’s privacy from fingerprinting [RFC6973].

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

http://127.0.0.1:4035/gotapi/availability
https://127.0.0.1:4036/gotapi/availability

OMA-ER-GoOtAPI-V1_1-20151215-C Page 41 (81)

8.1.2 Invoking the GotAPI application

If the application finds that the GotAPI application is not running, it has to invoke the GotAPI application. To do so, the
application needs to use an OS-specific or a UA-specific method that enables the application to invoke the GotAPI
application.

For example, most of the Android browsers support URI Schemes to invoke a native application with its package name for
the web application running on the web browser. If the web application shows a hyper-link embedding the URI scheme, the
user can invoke the GotAPI application by tapping it.

Example of the URI Scheme with a package name (Android Chrome)

<a href="intent://#Intent;scheme=gotapi;package=com.example.gotapi;S.origin=app.example.jp;S.key=0123456789; ;
end">Invoke the GotAPI Server

In the implementation model that GotAPI 1.0 supports, the GotAPI Server and GotAPI Auth Server are implemented as a
single application. Therefore, when the GotAPI application is invoked, both the GotAPI Server and the GotAPI Auth Server
are invoked, so that the application can use the GotAPI-1 and GotAPI-2 interfaces.

If the application is an Android native application, it can use an Explicit Intent for invoking the GotAPI application and
sending the necessary information.

(1) HMAC server authentication used:

In order to support the HMAC server authentication as defined in 7.3.3.3, the application is expected to provide the
GotAPI application with the following data using the OS-specific or the UA-specific method when invoking the GotAPI
application as shown in the example above;

origin,

The origin is an identifier of the application. If the application is a web application, this value is the part of the URL
specified as “origin” in RFC6454 (e.g. http://app.example.com). If the application is an OS-specific native application or
Hybrid Native/Web App, the application ID recognized by the OS, such as a package name. (e.g. com.example.app).

key

The key is generated by the application, composed of unpredictable random characters. The key is used for HMAC
server authentication for the purpose of preventing GotAPI Server spoofing.

When using the HMAC server authentication, it must be ensured that the OS-specific or the UA-specific method to
invoke the GotAPI application must qualify as a Trusted Channel as defined in section 7.3.3.3.

When the GotAPI application is started by an application, the GotAPI Server SHALL securely store the origin and key
provided by the application.

The GotAPI and the GotAPI Auth Server SHALL retain and associate the origin and key for use in validating subsequent
requests from the application.

The GotAPI and the GotAPI Auth Server MAY set an expiration date/time to the pair of the origin and the key, and
MAY revoke the pair when the expiration is reached.

GotAPI and the GotAPI Auth Server SHALL allow applications to update their key at any time, and any number of
times.
(2) HMAC server authentication not used:

The application may decide whether or not to use the HMAC server authentication. Hence, the application is not
mandated to send the origin and the key in the URI Scheme.

If the GotAPI application does not receive the key or receives an empty string as the key from the application, the
GotAPI Server and the GotAPI Auth Server SHALL recognize that the application is not using the HMAC server
authentication and act accordingly.

GotAPI Servers and the GotAPI Auth Server SHALL support the ability of applications to start using HMAC server
authentication at any time.

Recommendations for applications (non-normative)

e The application MAY decide whether or not to use the HMAC server authentication.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 42 (81)

e The application MAY update the key at any time, as many times as it likes.

e The application SHOULD update the key whenever the application starts to run, and start the session with a new
key.

8.2 GotAPI Authorization Server

This section defines the data format used over the GotAPI-2 Interface.

As described in the section “7.2.2.2 GotAPI-2”, the application has to obtain authorization for accessing the GotAPI-based
APIs from the GotAPI Auth Server over the GotAPI-2 Interface. The GotAPI-2 interface is based upon the concepts of
OAuth. The request and response are sent over the HTTP protocol.

Firstly, the application sends an application authorization request with the origin of the application, an identifier of the
application, to the GotAPI Auth Server. If the application is a Web Application, the origin is provided in the HTTP Origin
request header by the browser as described in [CORS]. If the application is an OS-specific native application or a Hybrid
Native/Web App, the origin is an application identifier managed by the underlying OS, such as a package name. For example,
if the OS is Android, the origin could be “com.example.app”. It has to be set as the value of the HTTP X-GotAPI-Origin
request header by the application.

When the GotAPI Auth Server receives the request, the GotAPI Auth Server may check if the origin is acceptable or not. If
the origin is acceptable, the GotAPI Auth Server creates a series of random digits, called as a “grant”, that is long enough not
to be predicted. Then the GotAPI Auth Server returns the grant to the application. This transaction is defined in section “8.2.1
Grant”.

Secondary, the application sends an access token request with (i) the origin, which is provided by the browser as described
above, (ii) the grant, which was obtained in the previous transaction, and (iii) the scope, which is a collection of the functions
that the application wants to use.

When the GotAPI Auth Server receives the request, the GotAPI Auth Server asks the user if the application may use the
requested scope shown in the dialog box. If the request is acceptable, the GotAPI Auth Server creates a series of random
digits, called as an "access token", that is long enough not to be predicted. This transaction is defined in the section “8.2.2
Access token”.

8.2.1 Grant

The application sends an application authorization request as below. The GotAPI Auth Server SHALL be able to receive and
process the request that is sent by the application appropriately.

Definition of the request

Method HTTP GET (REST)

Request URL http://127.0.0.1:4035/gotapi/authorization/grant

https://127.0.0.1:4036/gotapi/authorization/grant

HTTP request Origin:

Header
This value is the origin of the web application running on the web browser. For example, it

could be "http://app.example.com". The application developers do not need to take care of
this because this header is automatically set by the web browser.

This value is MANDATORY if the application is a web application running on a web browser.
X-GotAPI-Origin:

This value is the origin of the 0S-specific native application or the Hybrid Native/Web App.
For example, an Android native application could set this header to "com.example.app".

This value is MANDATORY if the application is an 0S-specific native application or a Hybrid
Native/Web App.

Parameters None

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

http://127.0.0.1:4035/gotapi/authorization/grant
https://127.0.0.1:4036/gotapi/authorization/grant

OMA-ER-GoOtAPI-V1_1-20151215-C Page 43 (81)

Example of the request by a web application running on a web browser

GET /gotapi/authorization/grant HTTP/1.1
Host: 127.0.0.1

Origin: http://app.example.com

...(Other headers)

Example of the request by an OS-specific native application or a Hybrid Native/Web App

GET /gotapi/authorization/grant HTTP/1.1

Host: 127.0.0.1

X-GotAPI-Origin: com.example.app

...(Other headers)
If the X-GotAPI-Origin header exists in the HTTP request header, the GotAPI Auth Server SHALL assume that the
application is an OS-specific native application or a Hybrid Native/Web App and the value is the origin of the application. If
both of the X-GotAPI-Origin and the Origin exist in the HTTP request header, the GotAPI Auth Server SHALL take the
value of the X-GotAPI-Origin as the origin. If only the Origin header exists in the request header, the GotAPI Server SHALL
assume that the application is a web application running on a web browser. If neither the Origin header nor the X-GotAPI-

Origin header exists, the GotAPI Server SHALL return the error code as defined by the definition of the JSON format of the
response below.

After the GotAPI Auth Server determines if the origin of the application is acceptable or not, it SHALL respond as follows:

Definition of the response

MIME-Type application/json

HTTP status 200 0K

Definition of the JSON format of the response

result Number If the origin was accepted by the GotAPI Auth Mandatory
Server, the value is @, otherwise an integer other
than @, which indicates an error code.

This specification doesn't define error codes.

clientId String The grant which the GotAPI Auth Server created for Mandatory
the accepted origin.

If the origin was not accepted, this value must be
an empty string.

errorCode String If the origin was not accepted or an error occurred, Mandatory
this value is set to an integer other than @.
Otherwise, this value must be ©.

This specification doesn't define error codes.

errorMessage String If the origin was not accepted or an error occurred, Mandatory
this value is set to a human-readable letter string
describing the error.

Otherwise, this value must be an empty string.

hmac String An HMAC generated for the counter measure against Mandatory if the
the Server spoofing attack described in the section application provides
"7.3.3.3 HMAC server authentication using trusted a key to the GotAPI
Application ID for the Server spoofing attack”. Auth Server

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GOtAPI-V1_1-20151215-C Page 44 (81)

Example of the response when the origin was accepted successfully

{
"result":0,
"clientId": "©123456789",
"errorCode": 0,
"errorMessage": "" ,
"hmac": "@0123..... xyz"

}

Example of the response when the origin was not accepted

{
"result":1,
"clientId": "",
"errorCode": 1,
"errorMessage": "The application is not an official application of the Example Service." ,
"hmac": "@123..... xyz"
}

The GotAPI Auth Server MAY append additional name-value pairs in the JSON data as needed.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 45 (81)

8.2.2 Access token

If the application receives the grant (clientld) from the GotAPI Auth Server, the application sends an access token request as
below. The GotAPI Auth Server SHALL be able to receive and process the request that is sent by the application
appropriately.

Definition of the request

Method HTTP GET (REST)

Request URL http://127.0.0.1:4035/gotapi/authorization/accesstoken

https://127.0.0.1:4036/gotapi/authorization/accesstoken

HTTP request Origin:

Header
This value is the origin of the web application running on the web browser. For example, it

could be "http://app.example.com”. As this header is automatically set by the web browser,
the developer of the application does not need to take care of it.

This value is MANDATORY if the application is a web application running on a web browser.
X-GotAPI-Origin:

This value is the origin of the 0S-specific native application or the Hybrid Native/Web App.
For example, the origin of an Android native application, it could be "com.example.app".

This value is MANDATORY if the application is an 0S-specific native application or a Hybrid
Native/Web App.

Parameters clientId:

This value is the grant that the application received from the GotAPI Auth Server
previously.

scope:

The list of functions that the application wants to use. This value is a comma-separated
string such as "notification, vibration". This value must not include any white-space.

This specification doesn't define the names of the functions. The names of the functions are
defined by the GotAPI service provider.

applicationName:
This value is the name of the application. This parameter is OPTIONAL. This value will be

shown to the user when the user is requested for authorization of the application.

Example of the request by a web application running on a web browser

GET /gotapi/authorization/accesstoken?clientId=0123456789&scope=notification,vibration&
applicationName=Smart%20Watch&20Controller HTTP/1.1

Host: 127.0.0.1
Origin: http://app.example.com

...(Other headers)

Example of the request by an OS-specific native application or a Hybrid Native/Web App

GET /gotapi/authorization/accesstoken?clientId=0123456789&scope=notification,vibration&
applicationName=Smart%20Watch&20Controller HTTP/1.1

Host: 127.0.0.1
X-GotAPI-Origin: com.example.app

...(Other headers)

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

http://127.0.0.1:4035/gotapi/authorization/accesstoken
https://127.0.0.1:4036/gotapi/authorization/accesstoken

OMA-ER-GoOtAPI-V1_1-20151215-C Page 46 (81)

If the X-GotAPI-Orign header exists in the HTTP request header, the GotAPI Auth Server SHALL assume that the
application is an OS-specific native application or a Hybrid Native/Web App and the value is the origin of the application. If
both of the X-GotAPI-Origin and Origin exist in the HTTP request request header, the GotAPI Auth Server SHALL take the
value of the X-GotAPI-Origin as the origin. If only Origin header exists in the request header, the GotAPI Server SHALL
assume that the application is a web application running on a web browser. If neither the Origin header nor the X-GotAPI-
Origin header exists, the GotAPI Server SHALL return the error code as defined by the definition of the JSON format of the
response below.

If the origin is accepted as defined in the section “8.2.1 Grant”, the GotAPI Auth Server SHALL ask the user if the
application may use the requested scope as described in the section “7.2.2.2 GotAPI-2”. If the origin is not accepted, the
GotAPI Server SHALL send a response immediately without asking the user anything.

The GotAPI Auth Server SHALL respond as follows:

Definition of the response

MIME-Type application/json
HTTP status 200 OK

Definition of the JSON format of the response

result Number If the requested scope is authorized by the user Mandatory
through the GotAPI Auth Server, the value is 9o,
otherwise an integer other than ©, which indicates
an error code.

This specification doesn't define error codes.

accessToken String The access token which the GotAPI Auth Server Mandatory
created for the authorized scope requested by the
application.

If the scope were not authorized, this value must be
an empty string.

errorCode String If the requested scope was not authorized or an Mandatory
error occurred, this value is set to an integer
other than @. Otherwise, this value must be ©.

This specification doesn't define error codes.

errorMessage String If the requested scope was not authorized or an Mandatory
error occurred, this value is set to a human-
readable letter string describing the error.

Otherwise, this value must be an empty string.

hmac String An HMAC generated for the counter measure against Mandatory if the
the Server spoofing attack described in the section application provides
"7.3.3.3 HMAC server authentication using trusted a key to the GotAPI
Application ID for the Server spoofing attack”. Auth Server

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 47 (81)

Example of the response when the requested scope was authorized successfully

{
"result": o,
"accessToken": "9876543210",
"errorCode": 9,
"errorMessage": "" ,
"hmac": "@123..... xyz"

}

Example of the response when the requested scope was not authorized

{
"result":1,
"accessToken": "",
"errorCode": 1,
"errorMessage": "The requested functions are not available." ,
"hmac": "@0123..... xyz"
}

The GotAPI Auth Server MAY append additional name-value pairs in the JSON data as needed.

8.3 GotAPI Server
8.3.1 Service Discovery API on the GotAPI-1 Interface

This API provides the information about what services the GotAPI Server can supply. This API is available only if the
application authorization on the GotAPI-2 Interface is completed.

Definition of the request

Method HTTP GET (REST)

Request URL http://127.0.0.1:4035/gotapi/servicediscovery

https://127.0.0.1:4036/gotapi/servicediscovery

Parameters None

Definition of the request parameters

accessToken The access token obtained from the GotAPI Auth Server through the GotAPI-2 Interface.
Example of the request URL
http://127.0.0.1:4035/gotapi/servicediscovery?accessToken=0987654321

When the GotAPI Server receives the request, it SHALL run the Plug-In Discovery procedure described in the section
“7.2.2.4.1 Plug-In Discovery” and the section “8.3.5 Plug-In discovery on the GotAPI-4 Interface”.

When the GotAPI Server completes the Plug-In Discovery procedure, it SHALL respond as follows:

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

http://127.0.0.1:4035/gotapi/servicediscovery
https://127.0.0.1:4036/gotapi/servicediscovery

OMA-ER-GoOtAPI-V1_1-20151215-C Page 48 (81)

Definition of the response

MIME-Type application/json

HTTP status 200 OK

Definition of the JSON format of the response

result Number If success, the value is @, otherwise an integer Mandatory
other than @, which indicates an error code.

This specification doesn't define error codes.

product String The name of the GotAPI Server (e.g. "ABConnect") Mandatory
version String The version of the GotAPI Server (e.g. "1.0"). Mandatory
services Array The list of the services. If none of services were Mandatory

found, an empty array is returned.

serviceld String The service identifier. Mandatory

If this service represents the external device which
is connected through the relevant Plug-In, this
value must be the device identifier (deviceld).

name String The name of the service. Mandatory

If this service represents the external device which
is connected through the relevant Plug-In, this
value must be the name of the external device.

manufacturer String The manufacturer of the service. Optional

If this service represents the external device which
is connected through the relevant Plug-In, this
value must be the manufacturer of the external
device. Otherwise, this value must be the Plug-In
provider name.

version String The version of the service. Optional

If this service represents the external device which
is connected through the relevant Plug-In, this
value must be the version of the external device.
Otherwise, this value must be the Plug-In version.

type String The type of the service. Optional

If this service represents the external device which
is connected through the relevant Plug-In, this
value represents the type of the network used to
connect to the external device. The value must be
any one of "WiFi", "BLE", "NFC", "USB", or
"Bluetooth".

online Boolean If the service is available at the time, this value Mandatory
is true. Otherwise false.

hmac String An HMAC generated for the counter measure against Mandatory if the
the GotAPI Server spoofing attack described in the application provides
section "7.4.3.2.1 HMAC server authentication using a key to the GotAPI
trusted Application ID for the GotAPI Server Server

spoofing attack".

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 49 (81)

The following example shows that the GotAPI Server has discovered two services. The first one is a service provided by an

internal enabler Plug-In, which provides CPU information of the local device. The second one is a service provided by an
external device.

Example of the response

{
"result":0,
"product": "ABConnect",
"version": "1.0",
"services":[
{
"id":"deviceinfo.pluginl.example.org",
"name":"Local Device Information Analyzer",
"manufacturer": "ABC Software Inc.",
"version": "2.3",
"type":"cpulnfo",
"online":true
1
{
"id":"devicel.plug-in2.example.org",
"name":"Smart watch DCO1A",
"manufacturer": "ABC Electric Inc.",
"version": "3.0",
"type":"WiFi",
"online":true
}
1,
"hmac": "@123..... xyz"
}

The GotAPI Server MAY append additional name-value pairs in the JSON data as needed.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GOtAPI-V1_1-20151215-C Page 50 (81)

8.3.2 Service Information API on the GotAPI-1 Interface

This API provides the detailed information of the service provided by internal capabilities of the host device and external
devices connected through the relevant Plug-In. This API is available only if the application authorization on the GotAPI-2
Interface is completed.

Definition of the request

Definitions

Method HTTP GET (REST)

Request URL http://127.0.0.1:4035/gotapi/serviceinformation

https://127.0.0.1:4036/gotapi/serviceinformation

Definition of the request parameters

Parameter name Definition of value

serviceld The identifier of the targeted service. This value is available from the Service Discovery API
on the GotAPI-1 Interface.
accessToken The access token obtained from the GotAPI Auth Server through the GotAPI-2 Interface.

Example of the request URL
http://127.0.0.1:4035/gotapi/serviceinformation?serviceld=abcdefgl23&accessToken=0987654321

When the GotAPI Server receives the request, it SHALL respond as follows:

Definition of the response

MIME-Type application/json
HTTP status 200 OK

Definition of the JSON format of the response

Sub name Definition of value

Mandatory/Optional

result Number If success, the value is @, otherwise an integer Mandatory
greater than 0, which indicates an error code.
This specification doesn't define error codes.
product String The name of the GotAPI Server (e.g. "ABConnect") Mandatory
version String The version of the GotAPI Server (e.g. "1.0"). Mandatory
connect Object Mandatory
wifi Boolean If the external device are available through WiFi, the Mandatory if the
value is true, otherwise false. external device
. , . supports the WifFi
If the external device doesn't support the WiFi connection.
connection, this name-value pair must not exist.
bluetooth Boolean If the external device are available through Mandatory if the
Bluetooth, the value is true, otherwise false. external device
. , supports the
If the external device doesn't support the Bluetooth Bleteeth conmactien.
connection, this name-value pair must not exist.
nfc Boolean If the external device are available through NFC, the Mandatory if the

value is true, otherwise false.

If the external device doesn't support the NFC

external device
supports the NFC

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

[OMA-Template-CombinedRelease-20150101-1]

http://127.0.0.1:4035/gotapi/serviceinformation
https://127.0.0.1:4036/gotapi/serviceinformation

OMA-ER-GotAPI-V1_1-20151215-C

Page 51 (81)

ble Boolean

USB Boolean
supports Array
hmac String

Example of the response
{

"result":0,
"product"”: "ABConnect",
"version":"1.0",
"connect": [
"wifi":true
])
"supports":[
"system",
"battery",
"vibration"
])
"hmac": "@123..... xyz "

}

connection, this name-value pair must not exist.

If the external device are available through BLE, the
value is true, otherwise false.

If the external device doesn't support the BLE
connection, this name-value pair must not exist.

If the external device are available through USB, the
value is true, otherwise false.

If the external device doesn't support the USB
connection, this name-value pair must not exist

The list of the available API names.

This specification doesn't define the names.

An HMAC generated for the counter measure against the
GOtAPI Server spoofing attack described in the section
"7.4.3.2.1 HMAC server authentication using trusted

Application ID for the GotAPI Server spoofing attack".

The GotAPI Server MAY append additional name-value pairs in the JSON data as needed.

8.3.3

connection.

Mandatory if the
external device

supports the BLE
connection.

Mandatory if the
external device
supports the USB
connection

Mandatory

Mandatory if the
application provide a
key to the GotAPI
Server

Common data set of request on the GotAPI-1 Interface

The GotAPI Server SHALL accept the following data in all API requests on the GotAPI-1Interface. The data set SHALL not

be used for other purposes.

Definition of the request parameters

nonce

a nonce generated by the application, which is described in the section "7.3.3.3 HMAC server

authentication using trusted Application ID for the Server spoofing attack".

Example of the request URL

http://127.0.0.1:4035/gotapi/exampleapi?nonce=93b3a219347

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 52 (81)

8.3.4 Common data set of responses on the GotAPI-1 Interface

The GotAPI Server SHALL include the following data in all responses on the GotAPI-1Interface. The data set SHALL not be
used for other purposes.

Common data set for the response on the GotAPI-1 Interface

product String The name of the GotAPI Server (e.g. "ABConnect") Mandatory

version String The version of the GotAPI Server (e.g. "1.0"). Mandatory

hmac String An HMAC generated for the counter measure against the Mandatory if the
GOtAPI Server spoofing attack described in the section application provide a
"7.4.3.2.1 HMAC server authentication using trusted key to the GotAPI
Application ID for the GotAPI Server spoofing attack". Server

8.3.5 Plug-In discovery on the GotAPI-4 Interface

When the application requests the Service Discovery described in the section “8.3.1 Service Discovery API on the GotAPI-1
Interface”, the GotAPI Server SHALL find the installed Plug-Ins and obtain information from each, and, then, ask the Plug-
Ins about what devices it provides access to are available at the time. After all the Plug-Ins have responded, the GotAPI
Server SHALL return the results of the Plug-In discovery to the application. See the section “7.2.2.4.1 Plug-In Discovery” for
the detailed architecture.

Using the GotAPI-4 Interface, the GotAPI Server sends the data object for the Plug-In discovery request to all the installed
Plug-Ins as defined blow:

Definition of the data object for the Plug-In discovery request

receiver String The address of the GotAPI Server application used by Mandatory
Plug-Ins. Generally, it is the application ID
recognized by the 0S.

requestCode int A request code identifying the request. This value Mandatory
could be any number but must MUST be an integer greater
than @, and unique for each open request, to ensure
responses can be correlated.

api String The value must be "gotapi". Mandatory
profile String The value must be "networkServiceDiscovery". Mandatory
attribute String The value must be "getNetworkServices". Mandatory

The GotAPI Server MAY append additional data in the data object as needed.
This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.

Requirements for OS-specific request channel and data container

Android The GotAPI Server must use Explicit Intents for the request.

The data object must be mapped to the Extra directly.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GotAPI-V1_1-20151215-C

Page 53 (81)

Example of the data object of the Android Implicit Intents

Action

Component

Extra
receiver
requestCode
api
profile
attribute
config

"org.deviceconnect.action.GET"

"org.example.plugin”

"org.deviceconnect™”

1

"gotapi"

"serviceDiscovery"

"services"

"additional parameters"”

This value is defined by the GotAPI Server
application.

This value is the package name of the Plug-In
application.

This value is the package name of the GotAPI
Server.

This name-value pair is an additional data
which 1is not defined by this specification.

When the Plug-In receives the Plug-In discovery request from the GotAPI Server, the Plug-In SHALL determine whether the
corresponding devices are available at the time, and, then, SHALL send the data object of the Plug-In discovery response to
the GotAPI Server as defined below:

Definition of the data object for the Plug-In discovery response

requestCode

result

services
serviceld
name
manufacturer
version

int

int

Array

String

String

String

String

The request code coming from the GotAPI Server. Mandatory

If success, the value is 0, otherwise an integer Mandatory
other than @, which indicates an error code.

This specification doesn't define error codes.

Mandatory
The service identifier representing the external Mandatory
device or internal service. This id must be a
string which is the concatenation of the identifier
of the Plug-In and the identifier of the device.
For example, if the identifier of the Plug-In is
"org.example.plugin” and the identifier of the
external device is "12345", the id could be
"com.example.plugin.12345".
The name of the device. Mandatory
The manufacturer of the service. Optional
If this service represents the external device
which is connected through the relevant Plug-In,
this value must be the manufacturer of the external
device. Otherwise, this value must be the Plug-In
provider name.
The version of the service. Optional

If this service represents the external device
which is connected through the relevant Plug-In,
this value must be the version of the external
device. Otherwise, this value must be the Plug-In

version.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GotAPI-V1_1-20151215-C

Page 54 (81)

type String The type of the network used to connect to the

device. The value must be any one of "WiFi", "BLE",

"NFC", “USB”, or "Bluetooth".

online Boolean True if the device is online and available, False
otherwise.
scopes Array The list of profiles that the application wants to

use. (e.g. ["file", "notification", "vibration"]).
A profile is a set of functions supported by the
Plug-In.

This specification doesn't define the profile
names. The profile names are defined by Plug-Ins.

The Plug-In MAY append additional data in the data object as needed.
This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.

Requirements for OS-specific response channel and data container

Android The GotAPI Server must use Explicit Intents for the response.

The data object must be mapped to the Extra directly.

Optional

Mandatory

Mandatory

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 55 (81)

Example of the data object of the Android Explicit Intents

Action "org.deviceconnect.action.RESPONSE" This value is defined by the GotAPI Server
application.
Component "org.deviceconnect"” This value is the package name of the GotAPI

Server application.
Extra
requestCode 1
result (2]

services [Array Object] This value is an example. Note that this is
"not" a JSON string. This value must be an
Array object whose content is the same as the
following JSON example:

[

"id": "org.example.plugin.12345",
"name": "Smart Watch S23P",
"manufacturer": "ABC Electric Inc.",
"version": "3.0",
"type": "Bluetooth",
"online": true,
"scopes": [

"notification",

"vibration"

3

]

config "additional parameters"” This name-value pair is an additional data
which is not defined by this specification.

When the GotAPI Server receives the responses from the Plug-Ins through the Plug-In discovery, it SHALL create a mapping
table which associates the service identifier with the relevant Plug-In.

The application doesn't care about what services are associated with what Plug-Ins. When the application sends a request on
the GotAPI-1 Interface, it specifies only the service identifier. When the GotAPI Server receives a request with a serviceld on
the GotAPI-1 Interface from the application, the GotAPI Server SHALL determine the relevant Plug-In from the mapping
table.

As described in the table "Definition of the data object for the Plug-In discovery response”, the id of each service (external
device or internal service) is a string which is the concatenation of the identifier of the Plug-In and the identifier of the
service. That is, the id of the service should be unique in a host device. But every Plug-Ins may not necessarily follow the
requirement. If multiple Plug-Ins report a same service id, the in the GotAPI Server SHALL take the first reported service id
and the others SHALL be ignored.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 56 (81)

8.3.6 Plug-In approval on the GotAPI-4 Interface

As described in the section “7.2.2.4.3 Approval”, when an application requests an APl access to a device through the
corresponding Plug-In for the first time, the GotAPI Server SHALL obtain a permission for the APl accesses from the Plug-
In. This procedure is composed of the two steps:

(1) The GotAPI Server requests registration of the application to the Plug-In.
(2) The GotAPI Server requests an access token to the Plug-In

This section defines the data object of the requests and responses for each step.

8.3.6.1 Request for registration of application

When an application requests an APl access to a device through the corresponding Plug-In for the first time, the GotAPI
Server SHALL send an app registration request and get a clientld from the Plug-In.

To get a clientld from the Plug-In, the GotAPI Server SHALL sends the data object to the Plug-In as defined blow:

Definition of the data object for the app registration request

receiver String The address of the GotAPI Server application used by Mandatory
Plug-Ins. Generally, it is the application ID
recognized by the 0S, such as a package name.

requestCode int A request code identifying the request. This value Mandatory
could be any number but must be an integer greater than
0.
api String The value must be "gotapi". Mandatory
profile String The value must be "authorization". Mandatory
attribute String The value must be "createClient". Mandatory
package String The identifier of the application. If the application Mandatory

is a web application running on a web browser, this
value is the origin of the application. If the
application is an 0S-specific native application or a
Hybrid Native/Web App, this value is the application ID
recognized by the 0S, such as a package name.

The GotAPI Server MAY append additional data in the data object as needed.

This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.

Requirements for OS-specific request channel and data container

Android The GotAPI Server must use Explicit Intents for the request.

The data object must be mapped to the Extra directly.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 57 (81)

Example of the data object of the Android Explicit Intents

Action "org.deviceconnect.action.GET" This value is defined by the GotAPI
Server application.

Component "org.example.plugin” This value is the package name of the
Plug-In application.

Extra

receiver "org.deviceconnect” This value is the package name of the
GOotAPI Server application.

requestCode 1

api "gotapi"

profile "authorization"

attribute "createClient”

package "http://example.com"

config "additional parameters"” This name-value pair is an additional
data which is not defined by this
specification.

When the Plug-In receives the application registration request from the GotAPI Server, the Plug-In SHALL create a clientld
for the application. The Plug-In MAY have a white-list of applications whose origin or application ID has been approved to
access the Plug-In. If the application isn't found in the white-list, the Plug-In MAY deny this request. Note that the details of
the approval of the origin of the applications is out of the scope this specification.

If the Plug-In accepts this request, the Plug-In SHALL send the data object to the GotAPI Server as defined below:

Definition of the data object for the app registration response

requestCode int The request code coming from the GotAPI Server. Mandatory

result int If success, the value is @, otherwise an integer Mandatory
greater than 0, which indicates an error code.

This specification doesn't define error codes.

clientId String The identifier of the application, which is generated Mandatory
by the Plug-In.

The Plug-In MAY append additional data in the data object as needed.

This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 58 (81)

OS-specific response channel and data container

Android The GotAPI Server must use Explicit Intents for the response.

The data object must be mapped to the Extra directly.

Example of the data object of the Android Explicit Intents

Action "org.deviceconnect.action.RESPONSE" This value is defined by the GotAPI Server
application.
Component "org.deviceconnect" This value is the package name of the GotAPI

Server application.

Extra
requestCode 1
result (2]
clientId "123ABC"
config "additional parameters"” This name-value pair is an additional data
which is not defined by this specification.
8.3.6.2 Request for an access token

Immediately after the GotAPI Server has received a clientld from the Plug-In, the GotAPI Server SHALL send the data
object to the Plug-In in order to get an access token as defined below:

Definition of the data object for the access token request

receiver String The address of the GotAPI Server application used by Mandatory
Plug-Ins. Generally, it is the application ID
recognized by the 0S, such as a package name.

requestCode int A request code identifying the request. This value Mandatory
could be any number but must be an integer greater than
0.
serviceld String The identifier of the targeted Service. This value is Mandatory
provided by the application over the GotAPI-1
Interface.
api String The value must be "gotapi”. Mandatory
profile String The value must be "authorization". Mandatory
attribute String The value must be "requestAccessToken". Mandatory
package String The identifier of the application. If the application Mandatory

is a web application running on a web browser, this
value is the origin of the application. If the
application is an 0S-specific native application or a
Hybrid Native/Web App, this value is the application ID
recognized by the 0S, such as a package name.

clientId String The identifier of the application, which is generated Mandatory
by the Plug-In.

The GotAPI Server MAY append additional data in the data object as needed.

This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GOtAPI-V1_1-20151215-C Page 59 (81)

Requirements for OS-specific request channel and data container

0s Description

Android The GotAPI Server must use Explicit Intents for the request.
The data object must be mapped to the Extra directly.

Example of the data object of the Android Explicit Intents

Name Sub name Example of value Note

Action "org.deviceconnect.action.GET" This value is defined by the GotAPI
Server application.

Component "org.example.plugin” This value is the package name of the
Plug-In application.

Extra

receiver "org.deviceconnect" This value is the package name of the
GotAPI Server application.

requestCode 1

serviceld "devicel.localhost.deviceconnect.org"

api "gotapi”

profile "authorization"

attribute "requestAccessToken"

package "http://example.com"

clientId "123ABC"

config "additional parameters"” This name-value pair is an additional
data which is not defined by this
specification.

When the Plug-In receives the access token request from the GotAPI Server, the Plug-In SHALL ask the user if the user
permits the application to accesses the Plug-In. For example, the Plug-In MAY show a yes/no confirmation dialog box to the
user.

If the user confirms permission for the application to access the Plug-In, the Plug-In SHALL create an access token, and send
the data object to the GotAPI Server as defined below:

Definition of the data object for the access token response

Sub name Type Definition of value Mandatory/Optional
requestCode int The request code coming from the GotAPI Server. Mandatory
result int If success, the value is 0, otherwise an integer Mandatory

greater than 0, which indicates an error code.

This specification doesn't define error codes.

accessToken String The access token for the application, which is Mandatory
generated by the Plug-In.

expire long The unix time representing the expiration date of the Mandatory
access token.

The Plug-In MAY append additional data in the data object as needed.
This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20150101-]

OMA-ER-GotAPI-V1_1-20151215-C Page 60 (81)

Requirements for OS-specific response channel and data container
0s Description

Android The GotAPI Server must use Explicit Intents for the response.

The data object must be mapped to the Extra directly.

Example of the data object of the Android Intents

Name Sub name Example of value Note

Action "org.deviceconnect.action.RESPONSE" This value is defined by the GotAPI Server
application.

Component "org.deviceconnect" This value is the package name of the GotAPI

Server application.
Extra
requestCode 1
result (2]
accessToken "0123456789abcdef"
expire 1413423117

config "additional parameters” This name-value pair is an additional data
which is not defined by this specification.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20150101-]

OMA-ER-GoOtAPI-V1_1-20151215-C Page 61 (81)

8.3.7 Common data set on the GotAPI-4 Interface

As described in the section “7.2.2.4.4 Data Forwarding”, once a connection between the GotAPI Server and the targeted
Plug-In is established (i.e., GotAPI-4 Plug-In Discovery and GotAPI-4 Approval have been successfully completed), the
application can communicate with the targeted Plug-In. The GotAPI Server passes the data transferred between the
application and the Plug-In transparently without any modification. But when the GotAPI Server communicates with the
Plug-In on the GotAPI-4 interface, some information is to be added for the purpose of interoperability. This section defines
the common data set.

The data names defined in the table below are reserved as the common data set for the request from the GotAPI Server to the
Plug-In. When the GotAPI Server sends a request to the Plug-In, it SHALL send the data object defined in the table below.
The GotAPI Server SHALL not use the data names defined in the table below for other purposes.

Definition of the common data set for the request from the GotAPI Server to the Plug-In

receiver String The address of the GotAPI Server application used by Mandatory
Plug-Ins. Generally, it is the application ID
recognized by the 0S, such as a package name.

requestCode int A request code identifying the request. This value Mandatory
could be any number but must be an integer greater than
0.
serviceld String The identifier of the targeted Service. This value is Mandatory
provided by the application over the GotAPI-1
Interface.
api String The value must be "gotapi". Mandatory
profile String Plug-In specific function name. This specification Mandatory

doesn't define the name.

attribute String Plug-In specific attribute name. This specification Mandatory
doesn't define the name.

clientId String The identifier of the application, which is generated Mandatory
by the Plug-In.

accessToken String The access token for the application, which is Mandatory
generated by the Plug-In.

The GotAPI Server MAY append additional data in the data object as needed.

This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.

Requirements for OS-specific request channel and data container

Android The GotAPI Server must use Explicit Intents for the request.

The data object must be mapped to the Extra directly.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GOtAPI-V1_1-20151215-C Page 62 (81)

Example of the data object of the Android Intents
Name Sub name Example of value Note

Action "org.deviceconnect.action.GET" This value is defined by the GotAPI
Server application.

Component "org.example.plugin” This value is the package name of the
Plug-In application.

Extra

receiver "org.deviceconnect" This value is the package name of the
GOotAPI Server application.

requestCode 1

serviceld "devicel.localhost.deviceconnect.org"
api "gotapi"

profile "vibration"

attribute "vibrate"

clientId "123ABC"

accessToken "0123456789abcdef"

config "additional parameters" This name-value pair is an additional
data which is not defined by this
specification.

The data names defined in the table below are reserved as the common data set for the response from the Plug-In to the
GotAPI Server. When the Plug-In sends a response to the GotAPI Server, it SHALL send the data object defined in the table
below. The Plug-In SHALL not use the data names defined in the table below for other purposes.

Definition of the common data set for the response from the Plug-In to the GotAPI Server

Sub name Definition of value Mandatory/Optional
requestCode Number The request code coming from the GotAPI Server. Mandatory
result Number If success, the value is 0, otherwise an integer Mandatory

greater than 0, which indicates an error code.

This specification doesn't define error codes.
The Plug-In MAY append additional data in the data object as needed.
This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.
Requirements for OS-specific response channel and data container
0s Description

Android The GotAPI Server must use Explicit Intents for the request.

The data object must be mapped to the Extra directly.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20150101-]

OMA-ER-GOtAPI-V1_1-20151215-C Page 63 (81)

Example of the data object of the Android Intents

Name Example of value Note

Action "org.deviceconnect.action.RESPONSE" This value is defined by the GotAPI Server
application.

Component "org.deviceconnect" This value is the package name of the GotAPI

Server application.
Extra
requestCode 1
result (2]

config "additional parameters"” This name-value pair is an additional data
which 1s not defined by this specification.

The Plug-In MAY append additional name-value pairs in the data object as needed.
This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.

8.4 Asynchronous messaging
8.4.1 Request for asynchronous messaging on the GotAPI-1 Interface

When the application uses the API in order to receive asynchronous messages, it sends a request to the GotAPI Server on the
GotAPI-1 Interface as follows:

Definition of the HTTP request

Method HTTP PUT

Request URL Depends on the API

Definition of the request parameters

Parameter name Definition of value Mandatory/Optional

serviceld The identifier of the targeted service. This value is available from the Mandatory
Service Discovery API on the GotAPI-1 Interface.

accessToken The access token obtained from the GotAPI Auth Server through the GotAPI-2 Mandatory
Interface.
nonce a nonce generated by the application, which is described in the section Optional

"7.3.3.3 HMAC server authentication using trusted Application ID for the
Server spoofing attack".

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20150101-]

OMA-ER-GoOtAPI-V1_1-20151215-C Page 64 (81)

Example of the request URL
http://127.0.0.1:4035/gotapi/health/thermometer?serviceId=abcdefgl23&accessToken=0987654321&nonce=93b3a219347

When the GotAPI Server receives a request from an application using HTTP PUT method, this means that the requested API
handles asynchronous messaging.

The GotAPI Server SHALL have an "asynchronous messaging mapping table" internally in order to remember which
application is interacting with the targeted Plug-In and the external device for asynchronous messaging. The "asynchronous
messaging mapping table" consists of the items as listed below:

v' The access token (to identify the application)
v' The requested URI (to identify the targeted service, Plug-In, and external device)

v' The WebSocket connection reference (to determine which connection is for the application, or to determine if the
application has established the GotAPI-5 Interface)

The entry always has at least two items, the access token and the WebSocket connection reference, or the access token and
the requested URI.

If the application has established the GotAPI-5 Interface before sending a request for asynchronous messaging on the
GotAPI-1 Interface, then the relevant entry has the access token and the WebSocket connection reference. If the application
sends a request for asynchronous messaging on the GotAPI-1 Interface before it establishes the GotAPI-5 Interface, then the
relevant entry has the access token and the requested URI.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 65 (81)

8.4.2 Request for asynchronous messaging on the GotAPI-4 Interface

When an application sends a request to the GotAPI Server on the GotAPI-1 Interface, the GotAPI Server passes the request
to the Plug-In on the GotAPI-4 Interface. The request includes the data object as follows:

Definition of the data object for request

method String This value SHALL be "PUT". Mandatory if the 0S is not Android.
Otherwise, optional.

If the 0S is Android, the "Action"
value SHALL include this information as
described below.

receiver String The address of the GotAPI Server Mandatory
application used by Plug-Ins.
Generally, it is the application ID
recognized by the 0S, such as a
package name.

requestCode int A request code identifying the Mandatory
request. This value could be any
number but must MUST be an integer
greater than @0, and unique for each
open request, to ensure responses can
be correlated.

serviceld String The identifier of the targeted Mandatory
Service. This value is provided by
the application over the GotAPI-1

Interface.
api String The value must be "gotapi". Mandatory
clientId String The identifier of the application, Mandatory

which is generated by the Plug-In
when the Plug-In Approval procedure
defined in the GotAPI specification.

accessToken String The access token for the application, Mandatory
which is generated by the Plug-In

when the Plug-In Approval procedure
defined in the GotAPI specification.

This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.

Requirements for OS-specific request channel and data container

Android The GotAPI Server must use Explicit Intents for the request.

The data object must be mapped to the Extra directly.

Example of the data object of the Android Explicit Intents

Action org.deviceconnect.action.PUT This value is defined by the GotAPI
Server application. But the last part
SHALL be "PUT".

Component org.example.plugin This value is the package name of the
Plug-In application.

Extra

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GOtAPI-V1_1-20151215-C Page 66 (81)

receiver org.deviceconnect

requestCode 10

servcieId devl.example.org
api gotapi
clientId 1234567890

accessToken 0987654321

Editor’s note:
TBD.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20150101-]

OMA-ER-GOtAPI-V1_1-20151215-C Page 67 (81)

8.4.3 Response for asynchronous messaging on the GotAPI-4 Interface
When the Plug-In receives the request, it SHALL respond to the GotAPI Server as follows:
Definition of the data object for the response

Name Type Definition of value Mandatory/Optional

method String This value SHALL be "RESPONSE". Mandatory if the 0S is not Android.
Otherwise, optional.

If the 0S is Android, the "Action"
value SHALL include this information
as described below.

requestCode Number The request code coming from the Mandatory
GotAPI Server.

result Number If success, the value is 0, Mandatory

otherwise an integer greater than o,
which indicates an error code.

This specification doesn't define
error codes.

The Plug-In MAY append additional data in the data object as needed.

This data object is sent to the GotAPI Server in an OS specific mechanism, .e.g., Intents for Android.
Requirements for OS-specific response channel and data container

0s Description

Android The GotAPI Server must use Explicit Intents for the request.
The data object must be mapped to the Extra directly.
Example of the data object of the Android Intents
Name ‘ Example of value Note
Action org.deviceconnect.action.RESPONSE This value is defined by the GotAPI
Server application. But the last part

SHALL be "RESPONSE".

Component org.deviceconnect This value is the package name of the
GotAPI Server application.

Extra
requestCode 10

result (%]

Editor's note:
TBD.

If the request was failed, the GotAPI SHALL remove the relevant entry in the "asynchronous messaging mapping table".

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20150101-]

OMA-ER-GoOtAPI-V1_1-20151215-C Page 68 (81)

8.4.4 Response for asynchronous messaging on the GotAPI-1 Interface
When GotAPI Server receives the response from the Plug-In, the GotAPI Server passes it to the application as follows:

Definition of the HTTP response

MIME-Type application/json

HTTP status 200 OK

Definition of the data object for the response

product String The name of the GotAPI Server (e.g. "ABConnect") Mandatory
version String The version of the GotAPI Server (e.g. "1.0"). Mandatory
result Number If success, the value is @, otherwise an integer Mandatory

greater than @0, which indicates an error code.

This specification doesn't define error codes.

hmac String An HMAC generated for the counter measure against Mandatory if the
the GotAPI Server spoofing attack. application provide a
key to the GotAPI

If the application includes a key for HMAC
calculation in the API request, the GotAPI Server
adds this value in the API response. Evaluating
whether the HMAC is identical to the result of
calculation of HMAC from the key, the application
can ensure that the response is genuine.

Server

The GotAPI Server SHALL pass all of the values other than values listed above keeping the structure of the data object.
The GotAPI Server MAY append additional data in the data object as needed.
The GotAPI Server SHALL serialize the data structure above as a JSON formatted stream (i.e. JSON string).

Example of the response

{
"product” : "ABCConnect",
"version" : "1.0",
"requestCode" : 10,
"result" . 0,
"hmac" : "0123456789",
"config" : "any data"

3

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 69 (81)

8.4.5 Establishing a WebSocket connection

The application establishes a WebSocket connection with the GotAPI Server in order to receive an asynchronous event
stream as follows:

Definition of the HTTP request

Request URL ws://127.0.0.1:4035/gotapi/websocket

wss://127.0.0.1:4036/gotapi/websocket

Example of the request URL

http://127.0.0.1:4035/gotapi/websocket

Basically, the GotAPI Server SHALL accept any WebSocket connections without any authorization or authentication. But
the GotAPI Server MAY reject WebSocket connections for the purpose of security reasons.

The GotAPI Server MAY close WebSocket connections which have not been established as the GotAPI-5 Interface for a
certain period (i.e. the application didn't send the access token for a certain period). For example, the GotAPI Server closes
the WebSocket connection which has not been established as the GotAPI-5 Interface in 10 seconds since the WebSocket
connection was opened

8.4.6 Establishing the GotAPI-5 Interface

After a WebSocket connection between the application and the GotAPI Server was established, the application sends the
access token which the application has received from the GotAPI Auth Server previously. The format of the data to be sent is
a JSON string as follows:

Definition of the data object

accessToken String The access token which the application got from the Mandatory
GOtAPI Auth Server previously

Example of the JSON string

{
"accessToken" : "abcdef©123456789"

}

When the GotAPI Server receives an access token from the WebSocket connection, the GotAPI Server checks if the access
token has been authorized by the GotAPI Auth Server.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

ws://127.0.0.1:4035/gotapi/websocket
wss://127.0.0.1:4036/gotapi/websocket

OMA-ER-GoOtAPI-V1_1-20151215-C Page 70 (81)

8.4.7 Theresponse for establishing the GotAPI-5 Interface

The GotAPI Server returns the result to the application using the WebSocket connection. The format of the data is a JSON
string as follows:

Definition of the data object

result Number If success, the value is 0@, otherwise an integer other Mandatory
than @, which indicates an error code.

This specification doesn't define error codes.
The GotAPI Server MAY append additional data in the data object as needed.

Example of the JSON string
{

"result" : @

}

If the access token was valid, the GotAPI SHALL add or update the relevant entry in the "asynchronous messaging mapping
table". Otherwise, the GotAPI Server SHALL close the WebSocket connection after sending the response as an error.

If the application has already established a WebSocket connection, the GotAPI Server SHALL close the new WebSocket
connection after sending the response as an error on the new WebSocket connection.

8.4.8 Asynchronous message from the Plug-In to the GotAPI Server on
the GotAPI-4 Interafce
The Plug-In sends an asynchronous message as follows:

Definition of the data object for request

method String This value SHALL be "EVENT". Mandatory if the 0S is not Android.
Otherwise, optional.

If the 0S is Android, the "Action"
value SHALL include this information
as described below.

The Plug-In MAY append additional data in the data object as needed.
This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.

Requirements for OS-specific request channel and data container

Android The GotAPI Server must use Explicit Intents for the request.

The data object must be mapped to the Extra directly.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 71 (81)

Example of the data object of the Android Explicit Intents

Action org.deviceconnect.action.EVENT This value is defined by the GotAPI
Server application. But the last part
SHALL be "EVENT".

Component org.example.plugin This value is the package name of the
Plug-In application.

Extra
requestCode 10 API-specific data

result 0 API-specific data

When the GotAPI Server receives a response from the Plug-In, if the "method" is "EVENT", the GotAPI Server SHALL pass
it to the application on the relevant WebSocket connection described in the section "8.4.9 Asynchronous message from the
GotAPI Server to the application on the GotAPI-5 Interface".

Editor's note:
TBD.

8.4.9 Asynchronous message from the GotAPI Server to the application
on the GotAPI-5 Interface

When the GotAPI Server receives an asynchronous message from the Plug-In, the GotAPI Server passes it to the application
on the GotAPI-5 Interface. The format of the data is a JSON string as follows:

Definition of the data object

serviceld String The identifier of the targeted Service. This Mandatory
value is provided by the application when the
application send the originated API request on
the GotAPI-1 Interface.

hmac String An HMAC generated for the counter measure Mandatory if the
against the GotAPI Server spoofing attack. application provide a
key to the GotAPI

If the application includes a key for HMAC
calculation in the API request, the GotAPI
Server adds this value in the API response.
Evaluating whether the HMAC is identical to the
result of calculation of HMAC from the key, the
application can ensure that the response is
genuine.

Server

The GotAPI Server SHALL pass all of the values other than values listed above keeping the structure of the data object.
The GotAPI Server MAY append additional data in the data object as needed.
The GotAPI Server SHALL serialize the data structure above as a JSON formatted stream (i.e. JSON string).

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 72 (81)

Example of the JSON string
{

"servicelId" : 0,

"hmac": "123456",

"thermometer": {
"temperature": 36.4,
"timeStamp": 1431856940275

}

8.4.10 Stop request from the application to the GotAPI Server on the
GotAPI-1 Interface

When the application wants to stop receiving asynchronous messages, it sends a request to the GotAPI Server on the GotAPI-
1 Interface as follows:

Definition of the HTTP request

Definitions
Method HTTP DELETE
Request URL Same as the API request

Definition of the request parameters

serviceld The identifier of the targeted service. This value is available from the Mandatory
Service Discovery API on the GotAPI-1 Interface.

accessToken The access token obtained from the GotAPI Auth Server through the GotAPI-2 Mandatory
Interface.
noncekey A nonce generated by the application, which is described in the section Optional

"7.3.3.3 HMAC server authentication using trusted Application ID for the
Server spoofing attack™ in this specification.A random string used for the
counter measure against the GotAPI Server spoofing. This key is generated
by the application. If the key is present, the GotAPI Server will include
a HMAC in the response. Evaluating whether the HMAC is identical to the
result of calculation of HMAC from the key, the application can ensure
that the response is genuine.

Example of the request URL

http://127.0.0.1:4035/gotapi/health/thermometer?serviceId=abcdefgl23&accessToken=0987654321&nonce=93b3a219347

The stop request is the same as the relevant API request except that the HTTP method is "DELETE".

When the GotAPI Server accepts the stop request, the GotAPI Server SHALL remove the relevant entry in the "asynchronous

messaging mapping table"

8.4.11 Stop request from the GotAPI Server to the Plug-In on the GotAPI-4
Interface

When the GotAPI Server receives a stop request from the application on the GotAPI-1 Interface, if entries associated with the
targeted Plug-In and service was found in the "asynchronous messaging mapping table", then jump to the step described in
the section "8.4.13 Stop response from the GotAPI Server to the application on the GotAPI-1 Interface", then return a result
as OK.

Otherwise, the GotAPI Server sends a stop request to the Plug-in on the GotAPI-4 Interface. The request includes the data
object as follows:

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GotAPI-V1_1-20151215-C

Page 73 (81)

Definition of the data object for request

method

receiver

requestCode

serviceld

api

profile

attribute

clientId

accessToken

String

String

int

String

String

String

String

String

String

This value SHALL be "DELETE". Mandatory if the 0S
is not Android.
Otherwise, optional.

If the 0S is Android,
the "Action" value
SHALL include this
information as
described below.

The address of the GotAPI Server application used by Mandatory
Plug-Ins. Generally, it is the application ID
recognized by the 0S, such as a package name.

A request code identifying the request. This value Mandatory
could be any number but must MUST be an integer greater

than @, and unique for each open request, to ensure

responses can be correlated.

The identifier of the targeted Service. This value is Mandatory
provided by the application over the GotAPI-1

Interface.

The value must be "gotapi". Mandatory
Plug-In specific function name. This specification Mandatory

doesn't define the name.

Plug-In specific attribute name. This specification Mandatory
doesn't define the name.

The identifier of the application, which is generated Mandatory
by the Plug-In when the Plug-In Approval procedure
defined in the GotAPI specification.

The access token for the application, which is Mandatory
generated by the Plug-In when the Plug-In Approval
procedure defined in the GotAPI specification.

When the Plug-In receives this request, the Plug-In SHALL identify the targeted application from the value of "accessToken"
and stop the messaging process for the application.

This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.

Requirements for OS-specific request channel and data container

Android

The GotAPI Server must use Explicit Intents for the request.

The data object must be mapped to the Extra directly.

Example of the data object of the Android Explicit Intents

Action

Component

Extra

org.deviceconnect.action.DELETE This value is defined by the GotAPI

Server application. But the last part
SHALL be "DELETE".

org.example.plugin This value is the package name of the

Plug-In application.

org.deviceconnect

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GOtAPI-V1_1-20151215-C Page 74 (81)

requestCode 10

servcield devl.example.org
api gotapi

profile health

attribute thermometer
clientId 1234567890

accessToken 0987654321

Editor’s note:
TBD.

8.4.12 Stop response from the Plug-In to the GotAPI Server on the
GotAPI-4 Interface

When the Plug-In receives the stop request, it SHALL respond as follows:

Definition of the data object for the response

Type Definition of value Mandatory/Optional

method String This value SHALL be "RESPONSE". Mandatory if the 0S
is not Android.
Otherwise, optional.

If the 0S is Android,
the "Action" value
SHALL include this
information as
described below.

requestCode Number The request code coming from the GotAPI Server. Mandatory

result Number If success, the value is @, otherwise an integer Mandatory
greater than @, which indicates an error code.

This specification doesn't define error codes.
The Plug-In MAY append additional data in the data object as needed.
This data object is sent to the GotAPI Server in an OS specific mechanism, .e.g., Intents for Android.
Requirements for OS-specific response channel and data container
0s Description ‘

Android The GotAPI Server must use Explicit Intents for the request.

The data object must be mapped to the Extra directly.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20150101-]

OMA-ER-GOtAPI-V1_1-20151215-C Page 75 (81)

Example of the data object of the Android Intents

Name Sub name Example of value Note

Action org.deviceconnect.action.RESPONSE This value is defined by the GotAPI
Server application. But the last part

SHALL be "RESPONSE".

Component org.deviceconnect This value is the package name of the
GotAPI Server application.

Extra
requestCode 10

result (%]

Editor's note:
TBD.

8.4.13 Stop response from the GotAPI Server to the application on the
GotAPI-1 Interface

When the GotAPI Server receives the stop response, the GotAPI Server passes the response to the application follows:
Definition of the HTTP response

MIME-Type application/json

HTTP status 200 OK

Definition of the data object for the response

Name Type Definition of value Mandatory/Optional
product String The name of the GotAPI Server (e.g. "ABConnect") Mandatory
version String The version of the GotAPI Server (e.g. "1.0"). Mandatory
result Number If success, the value is ©, otherwise an integer Mandatory

greater than 0@, which indicates an error code.

This specification doesn't define error codes.

hmac String An HMAC generated for the counter measure against Mandatory if the
the GotAPI Server spoofing attack. application provide a
key to the GotAPI

If the application includes a key for HMAC
calculation in the API request, the GotAPI Server
adds this value in the API response. Evaluating
whether the HMAC is identical to the result of
calculation of HMAC from the key, the application
can ensure that the response is genuine.

Server

The GotAPI Server SHALL serialize the data structure above as a JSON formatted stream (i.e. JSON string).

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20150101-]

OMA-ER-GoOtAPI-V1_1-20151215-C Page 76 (81)

Example of the response

{
"product": "ABCConnect",
"version": "1.0",
"result" : o,
"hmac" : "0123456789"
}

8.4.14 Unexpected disconnection of the WebSocket connection

If the WebSocket connection was disconnected unexpectedly (e.g., due to the application being terminated or crashed), the
GotAPI Server SHALL remove the relevant entries in the "asynchronous messaging mapping table".

The GotAPI Server SHALL extract the requested URIs from the removed entries, and examine the URIs to determine if the
relevant Plug-In is interacting with any other applications. If a Plug-In that is not interacting with any application is found,
the GotAPI Server SHALL send a stop request to the Plug-Ins as described in the section "8.4.11 Stop request from the
GotAPI Server to the Plug-In on the GotAPI-4 Interface".

Editor’s note:

This process assumes that the GotAPI Server manages interactions between Plug-Ins and applications. An alternative
approach is to have Plug-Ins manage the interactions. The details of this process are TBD.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20150101-1

OMA-ER-GoOtAPI-V1_1-20151215-C Page 77 (81)

9. Release Information
9.1 Supporting File Document Listing

Doc Ref | Permanent Document Reference | Description

Supporting File

Table 7: Listing of Supporting Documents in GotAPI 1.1 Release

9.2 OMNA Considerations

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GotAPI-V1_1-20151215-C

Page 78 (81)

Appendix A. Change History
A.1 Approved Version History

(Informative)

Reference Date Description
n/a n/a No prior version
A.2 Draft/Candidate Version 1.1 History
Document Identifier Date Sections Description

Draft Versions 11 Jun 2015 All

OMA-ER-GotAPI-V1_1

Initial baseline document, based upon agreed CR:
OMA-CD-GotAPI-2015-0005-CR_Asynchronous_messaging_channel

3 Aug 2015 Various

Updates for agreed CRs:
OMA-CD-GotAPI-2015-0007R01-
INP_WebSocket_GotAPI_4_TS_details_and_others
OMA-CD-GotAPI-2015-0008-
INP_Security_Considerations_for_the_GotAPI_5_Interface
OMA-CD-GotAPI-2015-0009-
INP_Nonce_on_GotAPI_1_and_GotAPI_5
OMA-CD-GotAPI-2015-0010-
INP_Adjustments_to_GotAPI_spec_for_GotAPI_5

20 Sep 2015 Various

Updates for agreed CRs:
OMA-CD-GotAPI-2015-0011-CR_Correction_of data_format
OMA-CD-GotAPI-2015-0012-CR_Add_USB_Support

Candidate Version 15 Dec 2015 All

OMA-ER-GotAPI-V1_1

Status changed to Candidate by TP
TP Ref # OMA-TP-2015-0217-
INP_GotAPI_V1_1 ERP_and_ETR_for_Candidate_approval

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 79 (81)

Appendix B. Call Flows (Informative)

This is a placeholder to be populated, as required.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 80 (81)

Appendix C. GotAPI Enabler Deployment Considerations

This is a placeholder, to be populated as required.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-ER-GoOtAPI-V1_1-20151215-C Page 81 (81)

Appendix D. Plug-In Discovery Mechanisms for Android

In order for the GotAPI Server to discover the installed Extension Plug-Ins, there are at least the following two mechanisms
available on the Android platform.

1. GotAPI Server initiated search mechanism

When the GotAPI Server is invoked, the GotAPI Server searches installed Extension Plug-Ins using Android specific
methods.

(1) Android supports the getinstalledApplications () method of the PackageManager class, which provides the list of
the installed applications. [ANDROID_INSTALLED_APPS]

(2) When the GotAPI Server gets the list of the installed applications on the Android device, the GotAPI Server can
find Extension Plug-In applications from the list. To identify which are the Extension Plug-Ins, the GotAPI Server
can read the AndroidManifest.xml of each application, and determine if the application is an Extension Plug-In or
not. [ANDROID_APP_MANIFEST]

Note: This specification does not define the way how to determine if an application is an Extension Plug-In or not. It is
left to implementers of the GotAPI Server. Implementers of Extension Plug-Ins must follow the rules that are defined
by each implementer of the GotAPI Server.

(3) The GotAPI Server must keep the list of the installed Extension Plug-In up-to-date during the GotAPI Server is
running. To do so, the GotAPI Server must keep receiving events fired when new native applications are installed.
Android supports the Broadcast Intent whose Action is “android.intent.action.PACKAGE_ADDED”.
[ANDROID_PACKAGE_ADDED]

(4) If the GotAPI Server adopts this mechanism, the GotAPI doesn't need to store the list in a persistent storage,
because the GotAPI Server is able to create a complete list of the installed Extension Plug-Ins whenever the GotAPI
Server is invoked and keep the list up-to-date during the GotAPI Server is running.

[References]
[ANDROID_INSTALLED_APPS]
http://developer.android.com/reference/android/content/pm/PackageManager.html#getinstalledApplications(int)
[ANDROID_PACKAGE_ADDED]

http://developer.android.com/reference/android/content/Intent.ntmI#ACTION PACKAGE ADDED
[ANDROID_APP_MANIFEST]

http://developer.android.com/guide/topics/manifest/manifest-intro.html

2. Plug-Ininitiated registration mechanism

(1) After an Extension Plug-In is installed and invoked, the Extension Plug-In invokes the GotAPI Server and sends a
request for registration to the GotAPI Server. For Android, the Extension Plug-In uses Explicit Intents to talk to the
GotAPI Server. The Extension Plug-In must know the package name of the GotAPI Server application and the
provider of the GotAPI Server implementation must ensure that the package name of the GotAPI Server
implementation is hardcoded in the Extension Plug-In.

(2) The GotAPI Server polls all the registered Extension Plug-Ins periodically in order to determine if each Extension
Plug-In is still installed.

(3) Ifthe GotAPI Server adopts this mechanism, the GotAPI has to store the list in a persistent storage and keep it up-
to-date, because the GotAPI Server doesn't know the complete list when the GotAPI Server is invoked.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

http://developer.android.com/reference/android/content/pm/PackageManager.html%23getInstalledApplications(int)
http://developer.android.com/reference/android/content/Intent.html%23ACTION_PACKAGE_ADDED
http://developer.android.com/guide/topics/manifest/manifest-intro.html

	1. Scope
	2. References
	2.1 Normative References
	2.2 Informative References

	3. Terminology and Conventions
	3.1 Conventions
	3.2 Definitions
	3.3 Abbreviations

	4. Introduction
	4.1 Version 1.0
	4.2 Version 1.1

	5. GotAPI Enabler release description (Informative)
	6. Requirements (Normative)
	6.1 High-Level Functional Requirements
	6.1.1 Security and Privacy
	6.1.1.1 Authentication and Authorization
	6.1.1.2 Data Integrity
	6.1.1.3 Confidentiality

	7. Architectural Model
	7.1 Architectural Diagram
	7.2 Functional Components and Interfaces/reference points definition
	7.2.1 Functional Components
	7.2.1.1 GotAPI Server
	7.2.1.2 GotAPI Authorization Server

	7.2.2 Interfaces
	7.2.2.1 GotAPI-1
	7.2.2.1.1 The Temporary Server Feed (TSF) Mechanism

	7.2.2.2 GotAPI-2
	7.2.2.3 GotAPI-3
	7.2.2.4 GotAPI-4
	7.2.2.4.1 Plug-In Discovery
	7.2.2.4.2 Service Discovery
	7.2.2.4.3 Approval
	7.2.2.4.4 Data Forwarding

	7.2.2.5 GotAPI-5

	7.3 Security Considerations
	7.3.1 Authorization
	7.3.2 Confidentialty and Integrity
	7.3.2.1 Confidentiality
	7.3.2.2 Integrity

	7.3.3 Immunity from Attack
	7.3.3.1 Traffic based attack
	7.3.3.2 Server spoofing attack
	7.3.3.3 HMAC server authentication using trusted Application ID for the Server spoofing attack

	8. Technical Specifications
	8.1 Common APIs for GotAPI applications
	8.1.1 Availability API on the GotAPI-1 Interface
	8.1.2 Invoking the GotAPI application

	8.2 GotAPI Authorization Server
	8.2.1 Grant
	8.2.2 Access token

	8.3 GotAPI Server
	8.3.1 Service Discovery API on the GotAPI-1 Interface
	8.3.2 Service Information API on the GotAPI-1 Interface
	8.3.3 Common data set of request on the GotAPI-1 Interface
	8.3.4 Common data set of responses on the GotAPI-1 Interface
	8.3.5 Plug-In discovery on the GotAPI-4 Interface
	8.3.6 Plug-In approval on the GotAPI-4 Interface
	8.3.6.1 Request for registration of application
	8.3.6.2 Request for an access token

	8.3.7 Common data set on the GotAPI-4 Interface

	8.4 Asynchronous messaging
	8.4.1 Request for asynchronous messaging on the GotAPI-1 Interface
	8.4.2 Request for asynchronous messaging on the GotAPI-4 Interface
	8.4.3 Response for asynchronous messaging on the GotAPI-4 Interface
	8.4.4 Response for asynchronous messaging on the GotAPI-1 Interface
	8.4.5 Establishing a WebSocket connection
	8.4.6 Establishing the GotAPI-5 Interface
	8.4.7 The response for establishing the GotAPI-5 Interface
	8.4.8 Asynchronous message from the Plug-In to the GotAPI Server on the GotAPI-4 Interafce
	8.4.9 Asynchronous message from the GotAPI Server to the application on the GotAPI-5 Interface
	8.4.10 Stop request from the application to the GotAPI Server on the GotAPI-1 Interface
	8.4.11 Stop request from the GotAPI Server to the Plug-In on the GotAPI-4 Interface
	8.4.12 Stop response from the Plug-In to the GotAPI Server on the GotAPI-4 Interface
	8.4.13 Stop response from the GotAPI Server to the application on the GotAPI-1 Interface
	8.4.14 Unexpected disconnection of the WebSocket connection

	9. Release Information
	9.1 Supporting File Document Listing
	9.2 OMNA Considerations

	Appendix A. Change History (Informative)
	A.1 Approved Version History
	A.2 Draft/Candidate Version 1.1 History

	Appendix B. Call Flows (Informative)
	Appendix C. GotAPI Enabler Deployment Considerations
	Appendix D. Plug-In Discovery Mechanisms for Android

