

  2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

Gaming Platform Version 1.0

Candidate Version 12-June-2003

Open Mobile Alliance
OMA-GamingPlatform-V1_0-20030612-C

Continues the Technical Activities Originated
in the Mobile Games Interoperability Forum

OMA-GamingPlatform-V1_0-20030612-C Page 2 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this
document may be used, at your sole risk, for any purposes. You may not use this document in any other manner
without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy
this document, provided that you retain all copyright and other proprietary notices contained in the original materials on
any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute
an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or
omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a
timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published
specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is
publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR
Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an
independent IPR review of this document and the information contained herein, and makes no representations or
warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This
document may contain inventions for which you must obtain licenses from third parties before making, using or selling
the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY
OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED
TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR
WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR
IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE
DOCUMENTS.

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

OMA-GamingPlatform-V1_0-20030612-C Page 3 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

Contents
1. SCOPE ...5
2. REFERENCES..6

2.1 NORMATIVE REFERENCES ...6
2.2 INFORMATIVE REFERENCES ..6

3. TERMINOLOGY AND CONVENTIONS ...7
3.1 CONVENTIONS ..7
3.2 DEFINITIONS ...7
3.3 ABBREVIATIONS ...12

4. INTRODUCTION...14
5. SESSION MANAGEMENT...15

5.1 DESCRIPTION..15
5.1.1 Interfaces ...16

5.2 EVENTS LIST...19
5.2.1 Events..19

5.3 ACTION LISTENERS LIST..21
6. CONNECTIVITY ...23

6.1 DESCRIPTION..23
6.2 CONTENT ..23
6.3 ASYNC PACKAGE..25

6.3.1 Mobile originated messages ..25
6.3.2 Mobile terminated messages ...25
6.3.3 Sync package...27
6.3.4 Transfer package ...28

7. METERING ..29
7.1 DESCRIPTION..29
7.2 TRAFFIC BASED EVENTS ..29
7.3 GAME SPECIFIC EVENTS ..29

8. SCORE AND COMPETITION MANAGEMENT ..31
8.1 DESCRIPTION..31

8.1.1 Scoring ..31
8.1.2 Competitions ...32

8.2 CONTENT ..32
8.2.1 Scores ..32
8.2.2 Multiple Score Tables ...32
8.2.3 Recording Scores ..32
8.2.4 Retrieving Past Scores...33

9. TIMERS...34
9.1 DESCRIPTION..34
9.2 PROGRAMMATIC TIMERS ..34
9.3 DECLARATIVE TIMERS...35

10. LOGGING ...36
10.1 DESCRIPTION..36

10.1.1 Logger Interface ..36
APPENDIX A. JAVADOCS ...37
APPENDIX B. SAMPLE CODE..38
APPENDIX C. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) ..42
APPENDIX D. CHANGE HISTORY (INFORMATIVE) ...43

OMA-GamingPlatform-V1_0-20030612-C Page 4 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

OMA-GamingPlatform-V1_0-20030612-C Page 5 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

1. Scope
The potential scope of a gaming platform is enormous. A pragmatic standpoint has, therefore,
been taken, where initial efforts have been concentrated in those areas that are deemed to reap
most benefit for the game developer. Specifically, in the first release of the API, the following
areas are addressed:

• Session management: provides the identifiers that bind the user interactions into single
concept of a game, provides access to the other APIs and provides the interface through
which the lifecycle of game entities can be managed.
Rationale: the core framework upon which all other API access is built.

• Connectivity: provides the communication layers, protecting the developer from the low-
level implementation details of the transport mechanism.
Rationale: network access is widely reported to cause significant rework on the part of
the game developer.

• Metering: provides a standard API through which the game can inform the
gamingplatform of game specific billable events.
Rationale: relates fundamentally to how the game is paid for and so of high importance.

• Scores and Competition Management: provides the mechanisms by which the game can
report and retrieve scores from the gaming platform, so allowing competitions to be run
in a unified manner.
Rationale: the basis upon which online communities can be built in the mobile gaming
arena.

• Logging: provides a standard reporting mechanism by which a game informs the gaming
platform of its status. This insulates against specific formatting requirements and through
the implementation of variable logging levels, assists in the troubleshooting process.
Rationale: by standardizing logging troubleshooting is simplified and thus operational
costs reduced.

• Timers: provides the mechanism by which a game schedules and delays activities.
Rationale: provides unified access to time based event triggers for the game developer.

Underlying the design of the APIs discussed in this document lays an event-based mechanism.
The Session API defines the core of the event model. Although not necessary, a familiarity of
event based programming will significantly help in the interpretation of this document.

The framework of APIs offers no guarantees on the re-entrancy of the event handlers. Specific
game platform vendors may offer tools and reentrance conditions on top of the APIs, but this is
an implementation issue, and out of the scope of this specification.

OMA-GamingPlatform-V1_0-20030612-C Page 6 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

2. References
2.1 Normative References
[CREQ] “Specification of WAP Conformance Requirements”. Open Mobile Alliance.

WAP-221-CREQ. URL:http//www.wapforum.org/ <to be replaced by an OMA ref when
available>

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
URL:http://www.ietf.org/rfc/rfc2119.txt

[RFC2234] “Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell.
November 1997. URL:http://www.ietf.org/rfc/rfc2234.txt

[OMAGPJD10] OMA-GamingPlatform-JavaDocs-V1_0-20030525-D

2.2 Informative References

No references.

OMA-GamingPlatform-V1_0-20030612-C Page 7 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

3. Terminology and Conventions
3.1 Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to
be informative.

3.2 Definitions
Actor Represents the persistent data for the ActorSession.

ActorEvent Event generated by a user.

ActorSession Representation of a User in an ApplicationInstance. One user can have many Actors.

Administration The task of modifying the behaviour of the product after it has been released and is in
operation. The actor is usually other than System Integrator or Developer e.g. Administrator or
Customer using administration tools.

Agent A computer guided user of the service.

Application Context The application context API provides the application developer with information regarding the
invocation, e.g. the current player, the incoming message, the triggered event, the incoming
HTTP request etc.

Application pull Service type where an application gets data by requesting it from a mobile terminal.

Application push Service type where an application sends data to a mobile terminal.

Application server / Core
platform

Server-side software platform that provides network connectivity and general support for
various applications. The application server may handle e.g. user sessions and load balancing.
More specific platforms (e.g. a game platform) can be constructed on top of the application
server software.

ApplicationEvent Event generated by an application.

ApplicationInstance An object representing an instance of an application. It can have any number of Actors.

Asynchronous Not synchronized; that is, not occurring at predetermined or regular intervals. The term
asynchronous is usually used to describe communications in which data can be transmitted
intermittently rather than in a steady stream. This term relates to electronic communication,
where participants send messages to others for reading at another time.

Avatar User ‘character’. A game can use avatar information when creating the player. Avatar can
contain e.g. scores, skins and results.

Billing To aggregate and process charging events in order to effect settlement through a financial
transaction.

OMA-GamingPlatform-V1_0-20030612-C Page 8 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

Binary portability Binary portability makes it possible to move an executable copy of a program from one machine
to another without any modification. Using an execution environment like Java, the virtual
machine provides binary portability across platforms.

Browser client A terminal that contains software that allows a user to view or "browse" text-based or
multimedia information on the Internet.

Competition An event where Users compete against each other or try to reach a set objective. Competitions
may last for a defined period of time. Usually some sort of prizes are awarded for the
competitors based on their Scores.

Configuration The task of modifying the behaviour of the product as a separate task from programming.
Configurations are done as part of the development cycle, integration and administration. The
behaviour of the product is a very wide-ranging term covering: user interface, logic, storage of
data, performance, session management, logging etc.

Content development The part of the Development work that produces the Service’s content, for example question
banks or game worlds. Content development includes localisation of the content.

Contest - Contest is a structural description of an entertainment concept involving one or more games
- Contests have a time frame when they are active i.e. playable, when game lists are accessed
via contests, only active games are shown
- Contests may have rules that control who can participate or win, when game lists are
accessed via contests, only accessible games are shown to a particular player
- Contests may consist of phases that are contests
- Contests involve an award that may be a qualification for the next phase
- Regarding reference, description and management contests are similar to games

Customer The organization providing the product for the End-Users. Customisation is done according to
the Customer requirements. For products offering mobile services, the Customer is often a
teleoperator or a portal owner.

Customisation The task of modifying the behaviour and appearance of the product due to specific customer
needs. This is usually achieved by Configuring the product.

Customised product A product generated and configured according to Customer's wishes.

Data administration The part of Administration, which is related to administrating the data entities the product uses.
E.g.: updating content files and templates, game configuration, user database and the set of
playable games.

Declarative Events Application events that can be declared (scheduled) to occur in a reoccurring fashion.

Delivery report A message notifying the sender whether the recipient has received a previously sent message.

Design portability Design portability is the ability to create applications, which only rely on the knowledge of
objects interfaces. As an example, Object Management Group’s (OMG) CORBA architecture
defines language independent IDL interfaces that facilitate design portability.

Development The task of producing all necessary components of a product. The tasks include e.g.
programming, initial Configuration, content development and user interface development.
Development precedes Integration. Development work should support Integration and
Administration for example by configurability.

Dynamic configuration Dynamic configuration is the part of Configuration work that can be done to software that is
running without stopping the software or the on-going sessions. This feature helps the
configuration of a released product. Examples of Dynamic configuration: tuning the product

OMA-GamingPlatform-V1_0-20030612-C Page 9 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

performance, adding new features or correcting bugs.

End-user The real human user using the service, i.e. playing a game.

Event An action or occurrence detected by a program. Events can be user actions, such as clicking a
mouse button or pressing a key, or system occurrences, such as running out of memory. Most
modern applications, particularly those that run in Macintosh and Windows environments, are
said to be event-driven, because they are designed to respond to events.

Event-based
programming

A method of programming in which blocks of code are run as users do things or as events
occur while a program is running.

Executable Client The executable client has local processing and storage capacity, e.g. J2ME clients. Executable
clients facilitate applications that can be used also when the terminal is not connected to the
network or out of coverage.

Game category Similar kinds of Game Concepts form a Game category, e.g. trivia games, adventure games
and board games. The games that belong to the same category have many similarities.
Therefore the same design work and implemented components can often be utilised. There is
no clear division of games to game categories and some categories overlap. One game may
belong to many categories.

Game concept Similar kinds of games form a Game concept. E.g. all customised and localised versions of
Monopoly are part of Monopoly game concept. Often the different versions are implemented by
Configuring one base implementation.

Game Execution
Environment (GEE)

The Game Execution Environment is an execution environment for game applications using an
OMA compliant gaming platform.

HTTP Connector The HTTP Connector hides the intricacies of the HTTP protocol. The connector creates objects
that encapsulate the HTTP request information.

Integration The task of making a product ready for Production. This includes integrating the work done in
software, user interface and content development. There is often also need for Configuration of
the product according to customer and locale needs.

Interoperability Interoperability refers to the capability for applications running on different computers to
exchange information and operate cooperatively using this information. In other words, the
ability to share data and services.

Localisation The task of modifying the behaviour and appearance of the product due to the culture and
language of its end-users. This is usually achieved by Configuring the product.

Localised product A product generated and configured according to locale requirements.

Maintenance The task of making bug corrections and fine-tunings to a product that is in production.

Master
ApplicationInstance

An object representing the deployed, static parts of the application (game).

Message API Contains interfaces to handle message-based connections like SMS, EMS, MMS and e-mail.

Message client A terminal that contains software that allows a user to send and receive messages.

OMA-GamingPlatform-V1_0-20030612-C Page 10 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

Message Connector The Message Connector hides the intricacies of different messaging protocol, e.g. SMS (via
CIMD2, UCP, SMPP etc), EMS, MMS, Nokia Smart Messaging, WAP Push etc. The Message
Connector creates objects that encapsulate incoming message information.

OMA Binary Portable Gaming platforms implementing the OMA defined game execution environment and services
enabling portability of games. Binary port-ability requires selection of CPU and operating
system, virtual machine or other binary execution environment, e.g. Win32, Java 2 Platform,
Microsoft .NET CLR.

OMA Design Portable Gaming platforms implementing the OMA defined services using native game execution
environment. Games running on this platform only utilize standard OMA defined services and
interfaces.

OMA Interoperable Gaming platforms implementing native game execution environment providing OMA defined
external interfaces that enable interoperability of different OMA compliant platforms.OMA
Interoperable gaming platforms do not have to implement all the standard services and
interfaces. Games developed forOMA Interoperable gaming platform are not portable.OMA
Binary and Design portable platforms are also interoperable.

Mobile phone A term often used interchangeably with cellular phone or wireless phone. Initially, a mobile
phone referred to a phone attached to a vehicle, the vehicle’s battery and had an external
antenna. Mobile phones were distinguished from transport-able, portable, cordless and
personal phones.

Mobile Phone A term often used interchangeably with cellular phone or wireless phone. Initially, a mobile
phone referred to a phone attached to a vehicle, the vehicle’s battery and had an external
antenna. Mobile phones were distinguished from transportable, portable, cordless and personal
phones. See also Transportable Phones.

Operating environment All the external software and hardware that are not part of the software itself, but may affect the
software’s behaviour. The server software’s environment may include e.g. data connections,
hardware, operating system, network services, database and monitoring software.

Operator logo A small icon displayed on the screen of the mobile phone. The logo includes an identifier and
thus can be assigned to a specific network operator. The logo will be displayed as long as the
mobile phone is booked into the network of the corresponding operator.

Portability Portability refers to the capability for software to run on any platform without modification.
Portability means the ability of a game to run on any OMA compliant gaming platform.

Portal A service that offers a broad array of resources and services, such as e-mail, forums, search
engines, entertainment, and on-line shopping malls.

Post-paid Calling plan where user gets a monthly bill.

Pre-paid Calling plan where user must pay before he/she can make calls.

Programmatic Events Events that can be added (scheduled) programmatically via the event API.

Protocol An agreed-upon format for transmitting data between two devices.

Re-entrant The attribute of a program or routine that allows the same copy of the program or routine to be
used concurrently by two or more tasks.

Request/reply paradigm A common pattern of communication used by application programs, where a client sends a
request message to a server, the server responds with a reply message, and the client blocks
waiting for this response.

OMA-GamingPlatform-V1_0-20030612-C Page 11 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

Score A single comparable integer value representing how well a user has done in the game.

Score Table A list of Scores of Users organized by pre-defined criteria.

Session A series of interactions encompassing the Actor’s lifetime within the specific Application
Instance.

Software development The part of Development work that produces the software of the product. This includes
generation of new software components, i.e. programming, as well as selecting existing
software components and versions to be used by the new software.

Source code portability Source code portability requires a program to be recompiled when moving from one machine to
another.

Subscriber Identity
Module

Designed to be inserted into a mobile telephone, a SIM or "smart" card contains all subscriber-
related data, such as phone numbers, service details, and memory for storing messages. With
a SIM card, calls can be made from any valid mobile phone because the subscriber data--not
the telephone's internal serial number--is used to make the call.

Synchronous Occurring at regular intervals. The opposite of synchronous is asynchronous. This term relates
to electronic communication, where participants communicate with each other at the same time.

System administration The part of Administration, which is related to administrating the Operating environment in
which the product is used, e.g. the operating system and network services.

Terminal/Access device The device, e.g. a handset or a computer, which is used to communicate with the Server.
Terminal manages the connection and communication between the End-user and the server.
Terminal includes User agent software. Terminal is usually used to accomplish also other tasks
than using games, e.g. to make phone calls or to use client side applications.

Tournament An event where Users compete against each other within a common game.

Transaction An atomic unit of work that modifies data. A transaction encloses one or more program
statements, all of which either complete or roll back.

User An object representing the actual end-user (that can be billed).

User agent The software located at the Terminal that manages the communication between the End-user
and the server. In browser enabled Terminals User agent is the browser. User agent is general-
purpose software that is meant to allow the usage of all service types.

User agent:
- Manages the user interface and presents the game information to the End-user, e.g. texts,
links, questions, game pieces and sounds
- Interprets the End-user commands, e.g. pressing a button
- Handles the communication with the server, i.e. send user commands and interprets the data
sent by the server.

User agent type and version affect how the server should format the data sent to the End-user.

User interface
development

The part of Development work that produces things needed by the Service to generate the user
interface, e.g. an HTML page. This includes e.g. template development.

OMA-GamingPlatform-V1_0-20030612-C Page 12 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

User pull Service type where a mobile terminal requests data from an application.

User push Service type where a mobile terminal sends data to an application.

View View defines what information is shown of the Game session and how it is formatted. Usually
only part of the state information is included at a time. The view may be selected by the game
or by the user of the game.

Wireless Without wires. Communication without any physical connections between the sender and the
receiver. Using the radio frequency spectrum (airways) and hardware, software and
technologies to transmit information.

Wireless terminal Any mobile terminal, mobile station, personal station, or personal terminal using non-fixed
access to the network

3.3 Abbreviations

API API, or Application Programming Interface, is the interface by which an application program
accesses operating system, platforms or other system services. An API provides a level of
abstraction between the requesting application and the provider of the service, ensuring portability
of the code. API main task is the translation of parameter lists from the calling format to the
service provider format, while supporting the interpretation of call-by-value and call-by-reference
arguments in one or both directions.

EDGE Enhanced Data rates for GSM Evolution.

EMS Enhanced Messaging Service.

GEE Game Execution Environment

GPRS General Packet Radio Services.

GSM Global System for Mobile Communication.

MMS The Multimedia Message Service (MMS) is a standard which will offer users the ability to send
and receive messages consisting of text, sounds and video.

MO Mobile originated.

MT Mobile terminated.

PDC Personal Digital Cellular

SMS The Short Messaging Service (SMS) - originally part of the GSM system, it refers to any text
messaging service available on digital mobile phones.

OMA-GamingPlatform-V1_0-20030612-C Page 13 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

TDMA Time Division Multiple Access.

UMTS Universal Mobile Telecommunications System.

WAP The Wireless Application Protocol (WAP) is an open, global specification that empowers mobile
users with wireless devices to easily access and interact with information and services instantly.
WAP is used with handheld digital wireless devices such as mobile phones, pagers, two-way
radios, smartphones and communicators -- from low-end to high-end.

WCDMA Wideband Code-Division Multiple Access

WLAN Wireless Local Area Network.

XHTML Extensible Hypertext Markup Language.

OMA-GamingPlatform-V1_0-20030612-C Page 14 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

4. Introduction
This document specifies the requirements for an OMA gaming platform.

The primary audience of this document are developers of mobile gaming platforms. However,
game developers will also find this document useful in determining the scope of functionality for
an OMA gaming platform that is addressed by this release.

This specification address the issues of portability and interoperability in the mobile games
space. This specification will allow game developers to produce and deploy mobile games that
can be more easily ported between multiple gaming platforms and wireless networks, and played
over different mobile devices.

This document is intended for readers familiar with the Java programming language.

In order to achieve compliance with this specification, the gaming platform supporting each of
the APIs listed within this document is mandatory.

OMA-GamingPlatform-V1_0-20030612-C Page 15 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

5. Session Management
5.1 Description

The Session Management APIs describe a framework and high level structure for the
applications executing within this gaming platform. This framework controls the application’s
lifecycle. It also facilitates managing the Actors, meaning the End-User representation within the
specific Application, and provides the Application Developer with access to all other interfaces
and APIs necessary to create the application. These include, the Connectivity, Logging, Scoring,
etc.

APIs are event based. Each event handling is a separate transaction. There are numerous types of
events: user input events, timer events, etc. The full list of possible events is found below. To
connect between the game logic and the gaming platform event handling mechanism the game
logic source classes must implement one or more of supplied event listener interfaces. Those
game logic classes should be registered in the gaming platform by the deployment process.

Game board lifecycle in the gaming platform is based on session entities. A session is defined as
a series of interactions encompassing the Actor’s lifetime within the specific Application
Instance. ActorSession represents the single player role in a game board. In the real world,
games may contain several players, and one single person can play several roles in different
games or events in a single game board (person plays chess with himself), therefore the relation
between ActorSession and User (which represents a user) is many to one. The relation
between ActorSession and ApplicationInstance (which represents a single game
board) may similarly be many to one. The Application session entity is used to represent a
single type of game, registered in the gaming platform, and defines shared functionality between
all ApplicationInstances of the same kind. Actor is shared functionality between all
ActorSessions of same User in the same Application. More information about
functionally provided in each session interface is provided in the detailed documentation in
JavaDoc Appendix A.

The gaming platform must maintain persistent relations among all session objects for all existing
game boards. Session objects and the relations among them may be changed automatically by a
gaming platform as a result of some event, e.g. user input can create new ActorSession, or
as a result of game logic execution, e.g. as result of ActorSession.delete()call.

When an event arrives at the system, the transaction opens and a transaction context is created.
Among other things context contains the target of the handling event. There are two kinds of
event, the first targets ApplicationInstance session entity, while the second targets
ActorSession session entity. The gaming platform must create the correct context for every
arriving event.

OMA-GamingPlatform-V1_0-20030612-C Page 16 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

1

0..*

1 0..*

1

0..*

10..1

0..1

1

1

0..*

interface
Actor

 actorId:lo
 userId:lon

interface
ActorSession

+createMeteringEvent(meteringEventT
+createTimer(expirationTime:Data,para
+delete():void
+joinToApplicationInstance(targetAppli

 actor:org.mgif.Actor
applicationInstance:org.mgif.Applicatio

interface
Application

 applicationId:long
 masterApplicationInstanceId:long

interface
ApplicationInstance

+createNewAppInstance(applicati
+createTimer(expirationTime:Data
+end():void
+enumerateActorSession():Iterato
+getActorSession(actorSesionID:
+sendInterAppMessage(targetApp

 application:org.mgif.Application
 applicationInstanceId:long

interface
MasterApplicationIn

interface
User

 userId:lon

Figure 1. Relations between main session entities

5.1.1 Interfaces
5.1.1.1 Actor

Actor represents shared information between all ActorSessions in same Application. It
contains only an ActorID that is used to access this shared information. This state is created
when a user starts to use Application for first time, and exists forever.

5.1.1.2 ActorSession
An ActorSession object represents a specific user in the context of a particular
ApplicationInstance. Each user can be present in multiple applications at the same time,

OMA-GamingPlatform-V1_0-20030612-C Page 17 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

and thus be associated with several ActorSession objects. There is a one-to-many
relationship between the Actor and ActorSession.

An ActorSession is created by the gaming platform and joined to the appropriate
ApplicationInstance. ActorSession interface contains ActorSessionID which
combined with ApplicationInstanceID and ApplicationID can be used to access
ActorSession persistent state.

The corresponding ActorSession object in the game handles inputs received from a specific
user.

An ActorSession is the actual representation of a user session in a game.

5.1.1.3 Application
An Application is the installed code or logic of a game. The Application is used for
creating specific running instances: game boards. Application defines shared information
for all ApplicationInstances. It also contains ApplicationID that is used to manage
this information.

5.1.1.4 ApplicationInstance
The ApplicationInstance is the actual game played. It is the running instance of the
Application object. For a game to be created there must be a new
ApplicationInstance created to manage the actual game and the ActorSessions in it.
In this way, multiple instances of an application can be run simultaneously, each controlling a
different game and its users. A specific Tic-Tac-Toe board is an example of an
ApplicationInstance.

Every ApplicationInstance contains an ApplicationInstanceID which may be
used to access the persistent information.

ApplicationInstance is target for Application events and implements listeners for
those events.

An ActorSession is the actual representation of a user session in a game.

5.1.1.5 ApplicationInstance - ActorSession Relations
Optional for this version of the OMA gaming platform:

An ApplicationInstance may manage several actors simultaneously.

A user may be represented simultaneously in several ApplicationInstances. A user may
simultaneously play in all those game boards.

OMA-GamingPlatform-V1_0-20030612-C Page 18 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

Note: The decision as to whether a user may play simultaneously in several instances of the same
game is a commercial production decision of the operator. The application cannot make any
assumptions to that effect.

5.1.1.6 MasterApplicationInstance
MasterApplicationInstance defines one special application instance, which is used to
manage events and information shared for regular application instances. This instance is the
target for special management events, e.g. declarative timers.

5.1.1.7 User
Users are subscribers who have cellular accounts and may access the gaming platform. The term
“user” represents a specific person connecting to the system via a cellular phone or another
communication device. The user is an object that exists independently of any game. The user
places requests to the system to play a particular game. Normally a user is identified with a SIM
(Subscriber Identity Module) or User Name and Password. Each user has an internal unique
UserID on the gaming platform.

When the user is connected to an Application, an instance of the ActorSession class is
created, by the gaming platform, for the user, and joined to that Application in the form of
an ActorSession object. It is possible for multiple ActorSession objects to exist
simultaneously for a particular user when each ActorSession object is attached to an
ApplicationInstance but controlled by the same user.

OMA-GamingPlatform-V1_0-20030612-C Page 19 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

5.2 Events List

interface
ActorSessionTimerEv

interface
DeleteEven

interface
ApplicationInstanceTimerE

interface
CreateEven

interface
TimerEvent

expirationTime:Da
 params:Map
 timerId:long

interface
ActorSessionEve

interface
Event

interface
ApplicationInstanceEv

interface
StartEvent

params:Ma

interface
InterAppMessageEve

 params:Map

interface
FirstInputEve

interface
InputEven

interface
JoinEvent

 params:Ma

interface
EndEvent

5.2.1 Events
5.2.1.1 Actor Session

Base interface for all events that have actor as a target

5.2.1.2 Actor Session Timer
Indicates timer event for Actor object

5.2.1.3 Application Instance
Base interface for all events that have application instance object as target.

5.2.1.4 Application Instance Timer
Indicates timer event for Application Instance object

OMA-GamingPlatform-V1_0-20030612-C Page 20 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

5.2.1.5 Create
Indicates start of lifecycle of Actor Session object.

5.2.1.6 Delete
indicates end of lifecycle of Actor Session object.

5.2.1.7 Delivery
Base interface for delivery reports.

5.2.1.8 ActorSessionDelivery
Event created as a result of delivery report to ActorSession object.

5.2.1.9 ApplicationInstanceDelivery
Event created as a result of delivery report to ApplicationInstance object.

5.2.1.10 End
Indicates end of lifecycle of Application Instance object.

5.2.1.11 Event
Base interface for all possible events

5.2.1.12 Input
Base class for all input events.

5.2.1.13 AsyncInputEvent
Event created as a result of input to ActorSession object

5.2.1.14 SyncInputEvent
Event created as a result of request/response input to ActorSession object

5.2.1.15 Inter App Message
Indictes message sent to Application Instance object by some other Application Instance object.

5.2.1.16 Join
Indicates request for join of user from some Actor Session object to another freshly created
Actor Session object. This event immediately follows CreateEvent.

5.2.1.17 Start

5.2.1.18 Timer
Base class for al timer events.

OMA-GamingPlatform-V1_0-20030612-C Page 21 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

5.3 Action Listeners List
5.3.1.1 OnActorSessionDelivery

This interface declares that implementing ActorSession class is ready to listen for incoming
delivery reports.

5.3.1.2 OnActorSessionJoin
This interface declares that implementing ActorSession class is ready to listen for JoinEvent
from some other ApplicationInstance and implements a hook to deal with transferred event.

5.3.1.3 OnActorSessionTimer
This interface declares that implementing ActorSession class is ready to listen for TimerEvents
implements a hook to deal with transferred event. To create TimerEvent use
ActorSession.createTimer() call.

5.3.1.4 OnApplicationInstanceDelivery
This interface declares that implementing ApplicationInstance class is ready to listen for
incoming delivery reports.

5.3.1.5 OnApplicationInstanceTimer
This interface declares that implementing ApplicationInstance class is ready to listen for
TimerEvents implements a hook to deal with transferred event. To create TimerEvent use
ApplicationInstance.createTimer() call.

5.3.1.6 OnAsyncInput
This interface declares that implementing ActorSession class is ready to listen for asynchronous
input event and implements a hook to deal with transferred event.

5.3.1.7 OnCreate
This interface declares that implementing ActorSession class is ready to listen for CreateEvent
and implements a hook to deal with transferred event. This event is automatically created when
ActorSession created, and this is first event that should be handled by ActorSession.

5.3.1.8 OnDelete
This interface declares that implementing ActorSession class is ready to listen for CreateEvent
and implements a hook to deal with transferred event. This event is automatically created when
ActorSession created, and this is first event that should be handled by ActorSession.

5.3.1.9 OnEnd
This interface declares that implementing ApplicationInstance class is ready to listen for
EndEvent and implements a hook to deal with transferred event. This event is automatically
created when ApplicationInstance deleted, and this is last event that should be handled by
ApplicationInstance.

OMA-GamingPlatform-V1_0-20030612-C Page 22 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

5.3.1.10 OnFirstAsyncInput
This interface declares that implementing ActorSession class is ready to listen for first
asynchronous input event and implements a hook to deal with transferred event.

5.3.1.11 OnFirstSyncInput
This interface declares that implementing ActorSession class is ready to listen for first
synchronous input event and implements a hook to deal with transferred event.

5.3.1.12 OnInterAppMessage
This interface declares that implementing ApplicationInstance class is ready to listen for
InterAppMessageEvent and implements a hook to deal with transferred event.

5.3.1.13 OnStart
This interface declares that implementing ApplicationInstance class is ready to listen for
StartEvent and implements a hook to deal with transferred event. This event is automatically
created when ApplicationInstance created, and this is first event that should be handled by
ApplicationInstance.

5.3.1.14 OnSyncInput
This interface declares that implementing ActorSession class is ready to listen for synchronous
input event and implements a hook to deal with transferred event.

OMA-GamingPlatform-V1_0-20030612-C Page 23 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

6. Connectivity
6.1 Description

The purpose of the connectivity APIs is to enable communication between the application and
the clients. The connectivity APIs specify how the requests from clients are exposed to the
applications, and how applications generate responses to the clients.

The communication models required by different application types can be categorized into four
modes:

• client pull

• client push

• application pull

• application push

This version of the connectivity APIs only addresses messaging and browser clients. Subsequent
versions will include executable clients.

6.2 Content
This section illustrates the components that collectively comprise the Connectivity APIs. This
API comprises of three parts:

• synchronous communication

• asynchronous communication

• transfer, dealing with functionality common to each of the above types of
communications

The Session APIs provide listener hooks for both synchronous and asynchronous
communication. An application serving requests from both communication types can simply
provide implementation for the both onSynchInput() and onAsynchInput() methods. The
protocol used by the client determines which method the gaming platform calls whenever a new
request is received from a client. The routing of requests to the correct application instance is
implementation specific.

OMA-GamingPlatform-V1_0-20030612-C Page 24 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

connectivity

sync

Request

Response

async

Message

TextMessage

MMMessage

MessageFactory MessageException

BinaryMessage

ServiceIndicationMessage

transfer

DatagramAttributes

Figure 2. Connectivity package

OMA-GamingPlatform-V1_0-20030612-C Page 25 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

6.3 Async Package
The async package manages the asynchronous communication.

async

MessageException

MessageFactory
+newBinaryMessage() : BinaryMessage
+newMMMessage() : MMMessage
+newServiceIndicationMessage() : ServiceIndicationMessage
+newTextMessage() : TextMessage

Message
+getDeliveryNotification() : boolean
+getExpiration() : long
+getMessageID() : String
+getTimestamp() : long
+numberOfSegments() : int
+send() : void
+setDeliveryNotification(request : boolean) : void
+setExpiration(expiration : long) : void

TextMessage
+getReplyMessage() : TextMessage
+getText() : String
+setText(text : String) : void

BinaryMessage
+getData() : byte[]
+getReplyMessage() : BinaryMessage
+setData(data : byte[]) : void

MMMessage
+addItem(item : MMItem) : void
+getItems() : Enumeration

MMItem
+getData() : byte[]
+getLength() : int
+getMimeType() : String
+setData(data : byte[]) : void
+setMimeType(type : String) : String

ServiceIndicationMessage
+getAction() : ServiceIndicationAction
+getHref() : String
+getMessage() : String
+setAction(action : ServiceIndicationAction) : void
+setHref(href : String) : void
+setMessage(message : String) : void

ServiceIndicationAction
-ServiceIndicationAction(name : String)
+toString() : String

Figure 3. Async package
The asynchronous communication uses messages. The base interface for all messages is
org.mgif.connectivity.async.Message. The interface provides basic common
methods for handling messages.

6.3.1 Mobile originated messages
Incoming messages are delivered to the application via the OnFirstAsyncInput and
OnAsyncInput listeners.

6.3.2 Mobile terminated messages
Message interfaces contain a getReplyMessage() method that provides an easy way to
generate a response to an MO message. The MessageFactory is used for pushing an MT
message to a user. The MessageFactory is obtained from the ActorSession.

OMA-GamingPlatform-V1_0-20030612-C Page 26 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

Sample code snippet in Java (receiving and responding to an asynchronous client request):

import org.mgif.connectivity.async.*;

...

 public void onAsyncInput(AsyncInputEvent event)
 {
 TextMessage textMessage = (TextMessage) event.getMessage();
 if (textMessage.getText().equals("Hello GAMERS!"))
 {
 TextMessage replyMessage
 = textMessage.getReplyMessage();
 replyMessage.setText("Hello!");
 replyMessage.send();
 }
 }

The basic message interface is inherited to produce service specific message types.

• org.mgif.connectivity.async.TextMessage is an interface for handling
messages containing only textual data.

• org.mgif.connectivity.async.BinaryMessage is an interface for handling
messages containing binary data, e.g. operator logos.

• org.mgif.connectivity.async.ServiceIndicationMessage is an
interface for handling WAP push.

• org.mgif.connectivity.async.MMMessage is an interface for handling
Multimedia messages

 For details please refer to the Javadoc of the corresponding interfaces.

OMA-GamingPlatform-V1_0-20030612-C Page 27 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

6.3.3 Sync package
The sync package handles the synchronous communication.

sync
Request

+getCharacterEncoding() : String
+getContentLength() : int
+getContentType() : String
+getInputStream() : InputStream
+getReader() : BufferedReader
+setCharacterEncoding(encoding : String)

Response

+getBufferSize() : int
+getCharacterEncoding() : String
+getLocale() : Locale
+getOutputStream() : OutputStream
+getWriter() : PrintWriter
+setBufferSize(size : int)
+setContentLength(length : int)
+setContentType(type : String)
+setLocale(locale : Locale)

Figure 4. Sync package
Synchronous communication uses the request/reply paradigm. This is realized by using the
org.mgif.connectivity.sync.Request and
org.mgif.connectivity.sync.Response interfaces. Both interfaces contain methods
for getting and setting attributes, as well as other methods for dealing with the actual content of
the request or response.

Sample code snippet in Java (receiving and responding to an synchronous client request):

import org.mgif.connectivity.sync.*;

...

 public void onSyncInput(SyncInputEvent event)
 {
 Request request = event.getRequest();
 if (request.getContentType().equals("text/html"))
 {
 Response response = event.getResponse();
 response.getWriter().println("<html>");
 response.getWriter().println("<h1>Hello</h1>");
 response.getWriter().println("</html>");
 }
 }

OMA-GamingPlatform-V1_0-20030612-C Page 28 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

6.3.4 Transfer package
The transfer package contains the interfaces extended by both the async and sync packages.

transfer

Attributes

+getAttribute(key : String) : Object
+getAttributeNames() : Enumeration
+getAttributes() : Map
+isAttribute(key : String) : boolean
+removeAttribute(key : String)
+setAttribute(key : String, val : Object)

Datagram

+getLocale() : Locale
+getLocales() : Enumeration
+getProtocol() : String
+getScheme() : String
+getTerminalId() : String

Figure 5. Transfer package

OMA-GamingPlatform-V1_0-20030612-C Page 29 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

7. Metering
7.1 Description

A gaming platform may produce metering events for potential use in different billing scenarios.
Some metering events are traffic related, e.g. game session duration, MT SMS message, and
some are application specific, e.g. moving to the next level in a game.

A gaming platform may use metering events for post-paid, pre-paid and subscription scenarios.

The scope of these APIs is to address the generation of game specific metering events.

7.2 Traffic Based Events
A gaming platform may implement advanced, flexible metering services. A gaming platform
may provide metering of:

• Session duration

• Data transfer

• MT and MO message

• Subscription/Pre-Paid Billing authorization

The application developer is not responsible for adding code for metering of traffic related
events. Such metering is handled transparently by the gaming platform.

7.3 Game Specific Events
The Metering APIs are used to programmatically commit metering events. Each metering event
is created using a metering event type ID. All metering event types must be configured prior to
use. Processes or tools for configuration are undefined. A gaming platform vendor may choose
the mechanism for configuring these events. Each metering event type must have an integer ID.
Metering events are created in the scope of an ActorSession.

Sample code snippet in Java (metering event creation):

import org.mgif.*;
import org.mgif.metering.*;

...

// Create a metering event for moving to the next level
// (ID=17)
// An event type with ID=17 must have been configured

OMA-GamingPlatform-V1_0-20030612-C Page 30 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

MeteringEvent event = ActorSession.createMeteringEvent(17);
event.raise();

OMA-GamingPlatform-V1_0-20030612-C Page 31 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

8. Score and Competition Management
8.1 Description

These APIs provide the mechanisms for recording and retrieving scores. This allows various
forms of competition to be provided by either the gaming platform or the individual game
application.

8.1.1 Scoring
The gaming platform must support the following scoring models for applications. An
application must state the scoring model it will use for each of the scores it records, and must
reliably record these scores for each player for each session following the stated model.

Each model may be further configured according to scoring information, e.g. May more than one
score be stored for a particular user? Or are scores “better” when higher or lower?

8.1.1.1 No Scoring
No scores are recorded and no score table information is available. No further configuration
required. This is often used in games in which there is no simple score available. Such games
need to implement their own internal competition mechanisms as they will not be able to assume
support from the gaming platform.

8.1.1.2 Simple Numeric Scores
The game service records a simple numeric score for each user. This model must be configured
according to scoring information:

• Is “better” higher or lower?

• The number of scores that may be recorded per user.

• The total number of scores that are to be recorded.

The game application must record a score at least once for each player in each game session.

8.1.1.3 Cumulative Numeric Scores
The user builds up a score over a number of sessions. This scoring model must be configured
according to scoring information:

• Is “better” higher or lower?

• The total number of scores that are to be recorded.

In this case the game application first retrieves the user’s current score, alters it based on the
outcome of the session and then records the updated score.

8.1.1.4 Rank
This scoring model is provided to support services that maintain their own score table internally
by some mechanism not supported within this specification. The game service simply calls

OMA-GamingPlatform-V1_0-20030612-C Page 32 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

setScore with the players new rank as the value – all lower ranked positions are moved down to
make room. This scoring model must be configured according to scoring information:

• The total number of scores that are to be recorded.

8.1.1.5 Combined
An application can specify any number of score tables, each using one of the model described
above.

8.1.2 Competitions
Competition management is normally a feature of the game server and not the individual game,
consequently there is no specific API provided to support competitions. For a games service to
be useable for competitions it must record a score for every user in every game session. Such
scores must always be reliably comparable.

For every such games service the game platform may provide facilities for competitions running
over various time periods with the winner selected in a variety of ways – in part depending on
the nature of the scoring used in the game service in question.

If a game service wishes to implement a service specific competition system it may do so using a
combination of the Score Management API and Scheduling API. This is discouraged as it is
likely to duplicate platform functionality.

8.2 Content
8.2.1 Scores

All scores returned from the various interfaces defined below return objects implementing the
org.mgif.score.Score interface. This is a simple bean style interface allowing access to
the score value, the rank it represents from where the score was retrieved, if applicable, when the
score was achieved and who achieved it.

Score values are always represented by the int type. If a game requires fractional scores it
should scale these to produce an integer representation with an appropriate number of significant
digits.

8.2.2 Multiple Score Tables
An application can specify any number of score tables within reason. These are referred to via a
table number. All of the APIs in this chapter are provided in two forms. The first form does not
specify a table number and operates on the first or only table. The second form allows the table
number to be specified.

8.2.3 Recording Scores
All score recording is done via an object implementing the
org.mgif.score.ScoreManager interface that can be retrieved from the
ActorSession.

OMA-GamingPlatform-V1_0-20030612-C Page 33 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

The setScore method allows a score value to be set for the session. Normally it is assumed
the score was achieved at the time the setScore() method was called. Optionally the
time/date it was achieved may be provided explicitly.

The getScore() method retrieves the last score set for this session, or from a previous session
if the cumulative model is in use.

8.2.4 Retrieving Past Scores
All score retrieval is done via an object implementing the
org.mgif.score.ScoreTableManager interface which can be retrieved from the
ApplicationInstance.

The simplest method is getScoreAt() which retrieves a single score from a particular rank.
This will return null if no score is available at that rank.

The other methods all return an array of Score objects that may vary in size between 0 and the
requested number of scores if the scores requested are available or are not in the table in
question.

The top scores in the table can be retrieved by using the getTopScores() method.

The scores around a particular rank, or the rank of the highest score of some specific Actor,
may be retrieved by using the getScoresAround() method.

OMA-GamingPlatform-V1_0-20030612-C Page 34 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

9. Timers
9.1 Description

Applications that need to delay or schedule activities for a later time should use the timer service
provided by the gaming platform. The Timer service provides scheduling and notification of
timers. Agaming platform may provide additional unspecified services, e.g. load balancing and
persistence of timers.

Timers can be created either programmatically, i.e. by calling a method on an interface, or
declaratively, i.e. via some implementation specific mechanism for configuring timers.

9.2 Programmatic Timers
There are two types of programmatic timers, ActorSession timers and
ApplicationInstance timers.

ActorSession timers are created and notified in the scope of an ActorSession. The
createTimer()method on the ActorSession interface is used for creating these timers.
When such a timer expires the method onActorSessionTimer()on the
OnActorSessionTimer interface is invoked.

ApplicationInstance timers are created and notified in the scope of an
ApplicationInstance. The createTimer()method on the
ApplicationInstance interface is used for creating these timers. When such a timer
expires the method onApplicationInstanceTimer()on the
OnApplicationInstanceTimer interface is invoked.

Sample code snippet in Java (create timer)

import org.mgif.*;

...
// Create a timer in ActorSession scope
Hashtable params = new Hashtable();
params.put(“myParam”, “myValue”);
myActorSession.createTimer(new Date((new Date()).getTime() +
60*60*1000), params);

...

Sample code snippet in Java (timer notification)

import org.mgif.*;
import org.mgif.listener*;

public class MyTask implements OnActorSessionTimer {

OMA-GamingPlatform-V1_0-20030612-C Page 35 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

 public void onActorSessionTimer(ActorSessionTimer event) {
 // This method is called when the timer expires

 Map params = event.getParams();
 }
}

9.3 Declarative Timers
Declarative timers are created via an implementation specific mechanism, e.g. a configuration
file or administration tool. . When such a timer expires the method
onApplicationInstanceTimer()on the OnApplicationInstanceTimer interface
is invoked. All declarative timers are notified for the MasterApplicationInstance
entity.

OMA-GamingPlatform-V1_0-20030612-C Page 36 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

10. Logging
10.1 Description

A gaming platform may provide logging of events of all client requests and MT SMS messages,
timer events, etc. For debugging, troubleshooting, monitoring and other purposes it can be
important for the application developer to be able to write information to an application log. The
logging APIs of the gaming platform specification is designed for these purposes.

10.1.1 Logger Interface
The Logger interface from logging APIs, can be used to add information to the log. The
ActorSession and ApplicationInstance interfaces can be used to retrieve a
Logger.

Sample code snippet in Java

import org.mgif.util.logging.*;

...

Logger logger = myActorSession.getLogger();
logger.fine(“Moving to the next level.”);
// Move to the next level
...
if (successful) {
 Log.info(“The move to the next level was successful.”);
} else {
 Log.warning(“The move to the next level was
 unsuccessful.”);

•

OMA-GamingPlatform-V1_0-20030612-C Page 37 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

JavaDocs
The related JavaDocs [OMAGPJD10] for this Gaming Platform Specification are freely available in the OMA-
GamingPlatform-JavaDocs-V1_0-20030525-D zipfile, which can be found at
http://www.openmobilealliance.org/documents.asp.

OMA-GamingPlatform-V1_0-20030612-C Page 38 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

Sample Code
package org.mgif.examples.RPS;

import org.mgif.listener.OnFirstAsyncInput;
import org.mgif.listener.OnAsyncInput;
import org.mgif.listener.OnActorSessionTimer;
import org.mgif.listener.OnDelete;
import org.mgif.event.AsyncInputEvent;
import org.mgif.event.DeleteEvent;
import org.mgif.event.ActorSessionTimerEvent;
import org.mgif.ActorSession;
import org.mgif.util.logging.Logger;
import org.mgif.score.Score;
import org.mgif.score.ScoreManager;
import org.mgif.connectivity.async.MessageFactory;
import org.mgif.connectivity.async.TextMessage;
import org.mgif.connectivity.async.Message;

import java.util.Map;
import java.util.Date;
import java.util.HashMap;

/**
 * A very simple Rock-Paper-Scissors text message game written to this API
 * The game automatically ends after 24 hours.
 */
public class RockPaperScissors implements OnFirstAsyncInput, OnAsyncInput, OnActorSessionTimer,
OnDelete
{
 /**
 * Number of milliseconds on 24 hours!
 */
 private static final int ONE_DAY = 1000*60*60*24;

 /**
 * The three possible values to play!
 */
 private static final int ROCK = 0;
 private static final int PAPER = 1;
 private static final int SCISSORS = 2;

 /**
 * Handle a first input in a session.
 */
 public void onFirstAsyncInput(AsyncInputEvent event)
 {
 Message mo = event.getMessage();
 ActorSession actorSession = event.getActorSession();
 Logger logger = actorSession.getLogger();

 // Create an MT message to send back out.
 TextMessage mt;
 if (mo instanceof TextMessage) {
 logger.info("RPS: Session started for "+mo.getOriginator()+" by a text message.");
 mt = ((TextMessage)mo).getReplyMessage();
 } else {

OMA-GamingPlatform-V1_0-20030612-C Page 39 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

 logger.info("RPS: Session started for "+mo.getOriginator()+" by a non-text message.");
 mt = actorSession.getMessageFactory().newTextMessage();
 }

 // Fill in the MT and send it.
 mt.setText("Welcome to rock paper scissors - take your pick of r,p, or s");
 mt.send();

 // Create the timer which will end the game.
 Date oneDayInTheFuture = new Date((new Date()).getTime() + ONE_DAY);
 Map args = new HashMap();
 actorSession.createTimer(oneDayInTheFuture, args);
 }

 /**
 * Handle all subsequent inputs in a session.
 */
 public void onAsyncInput(AsyncInputEvent event)
 {
 Message message = event.getMessage();
 ActorSession actorSession = event.getActorSession();

 if (message instanceof TextMessage) {

 TextMessage mo = (TextMessage)message;

 // Try to act on the content of the MO.
 Result result = null;
 if (mo.getText().equalsIgnoreCase("r")) {
 result = takeTurn(ROCK);
 } else if (mo.getText().equalsIgnoreCase("p")) {
 result = takeTurn(PAPER);
 } else if (mo.getText().equalsIgnoreCase("s")) {
 result = takeTurn(SCISSORS);
 }

 TextMessage mt = mo.getReplyMessage();
 if (result!=null) {
 // We have a result so send out an appropriate MT.

 if (result.isUserWin()) {
 // If the user won then update their score.
 ScoreManager scoreManager = actorSession.getScoreManager();
 Score currentScore = scoreManager.getScore();
 scoreManager.setScore(currentScore.getValue()+1);
 }

 mt.setText(result.getDescription());

 } else {
 // We didn't understand the MO so send an error as out MT.
 mt.setText("I don't understand. Please choose one of r, p or s!");
 }
 mt.send();

 } else {
 // If the MO wasn't a text message push out an error.

OMA-GamingPlatform-V1_0-20030612-C Page 40 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

 TextMessage mt = actorSession.getMessageFactory().newTextMessage();
 mt.setText("Rock-Paper-Scissors can only respond to plain text messages - sorry!");
 mt.send();
 }
 }

 /**
 * Handle timer events.
 */
 public void onActorSessionTimer(ActorSessionTimerEvent event)
 {
 ActorSession actorSession = event.getActorSession();
 MessageFactory messageFactory = actorSession.getMessageFactory();

 // Let the user know the time has run out!
 TextMessage mt = messageFactory.newTextMessage();
 mt.setText("Your game time has run out!");
 mt.send();

 // Close the session.
 actorSession.delete();
 }

 /**
 * Handle session end.
 */
 public void onDelete(DeleteEvent event)
 {
 ActorSession actorSession = event.getActorSession();
 ScoreManager scoreManager = actorSession.getScoreManager();
 MessageFactory messageFactory = actorSession.getMessageFactory();
 Logger logger = actorSession.getLogger();

 // Send the user a summary of the session.
 TextMessage mt = messageFactory.newTextMessage();
 mt.setText("Your final score was "+scoreManager.getScore());
 mt.send();

 logger.info("RPS: Session finished for "+mt.getDestination());
 }

 /**
 * Table of results against user and cpu choices.
 */
 private static Result results[] = {
 new Result(false, "Rock draws with rock."),
 new Result(false, "Paper wraps rock - you lose."),
 new Result(true, "Rock blunts scissors - you win!"),
 new Result(true, "Paper wraps rock - you win!"),
 new Result(false, "Paper draws with paper."),
 new Result(false, "Scissors cut paper - you lose."),
 new Result(false, "Rock blunts scissors - you lose."),
 new Result(true, "Scissors cut paper - you win!"),
 new Result(false, "Scissors draws with scissors.")
 };

 /**

OMA-GamingPlatform-V1_0-20030612-C Page 41 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

 * The actual game "logic" - table driven.
 */
 private Result takeTurn(int userChoice)
 {
 int cpuChoice = (int)(Math.random()*3);
 boolean userWin = false;
 String description = null;

 Result result = results[userChoice*3+cpuChoice];

 return result;
 }

 /**
 * Simple bean representing the result of a round.
 */
 private static class Result
 {
 private boolean userWin;
 private String description;

 public Result(boolean userWin, String description)
 {
 this.userWin = userWin;
 this.description = description;
 }

 public boolean isUserWin()
 {
 return userWin;
 }

 public String getDescription()
 {
 return description;
 }
 }
}

OMA-GamingPlatform-V1_0-20030612-C Page 42 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

Static Conformance Requirements (Normative)
The notation used in this appendix is specified in [CREQ].

Item Function Reference Status Requirement
OMA-GamingPlatform-
V1_0-20030525-D

 M

OMA-GamingPlatform-
V1_0-20030525-D -

 O

OMA-GamingPlatform-V1_0-20030612-C Page 43 (43)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document [OMA-Template-Spec-20030824]

Change History (Informative)
A.1 Approved Version History

Reference Date Description
n/a n/a No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

Type of Change Date Section Description
Draft Version
OMA-GamingPlatform-V1_0-20030525-
D

25-May-2003 Draft submitted to OMA TP aproval

Candidate Version
OMA-ERELD-Games-Services-V1_0-
20030612-C

12 June 2003 Status Changed to Candidate by TP
TP ref# OMA-TP-2003-0267R1

