
 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

RESTful bindings for Parlay X Web Services - Common
Candidate Version 1.0 – 24 Aug 2010

Open Mobile Alliance
OMA-TS-ParlayREST_Common-V1_0-20100824-C

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 2 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of
this document and the information contained herein, and makes no representations or warranties regarding third party IPR,
including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you
must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in
the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

http://www.openmobilealliance.org/ipr.html
http://www.openmobilealliance.org/UseAgreement.html

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 3 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

Contents
1. SCOPE .. 5
2. REFERENCES... 6

2.1 NORMATIVE REFERENCES .. 6
2.2 INFORMATIVE REFERENCES ... 6

3. TERMINOLOGY AND CONVENTIONS .. 7
3.1 CONVENTIONS ... 7
3.2 DEFINITIONS .. 7
3.3 ABBREVIATIONS .. 7

4. INTRODUCTION ... 8
4.1 VERSION 1.0 .. 8

5. COMMON CONSIDERATIONS FOR PARLAYREST ... 9
5.1 USE OF REST GUIDELINES ... 9
5.2 NAMESPACES ... 9
5.3 UNSUPPORTED FORMATS .. 9
5.4 AUTHORING STYLE ... 9

5.4.1 Names .. 9
5.4.2 Case usage for names ... 9

5.5 CONTENT TYPE NEGOTIATION .. 9
5.6 RESOURCE CREATION ... 10

5.6.1 Error recovery during resource creation... 10
5.7 JSON ENCODING IN HTTP REQUESTS/RESPONSES .. 11

5.7.1 Serialization rules: general conversion .. 11
5.7.2 Serialization rules: structure-aware conversion ... 13
5.7.3 Rules for JSON-creating and JSON-consuming applications .. 15

6. SHARED DATA TYPE DEFINITIONS .. 16
6.1 ADDRESS DATA ITEMS ... 16

6.1.1 Charging ... 16
6.1.2 Charging data type ... 16

6.2 COMMON DATA TYPES .. 17
6.2.1 Enumeration: NotificationFormat .. 17
6.2.2 Enumeration: TimeMetrics .. 17
6.2.3 Type: TimeMetric .. 18
6.2.4 Type: ChargingInformation ... 18
6.2.5 Type: CallbackReference ... 18
6.2.6 Type: ResourceReference .. 18
6.2.7 Type: Link .. 19
6.2.8 Type: RequestError .. 19
6.2.9 Type: ServiceException ... 19
6.2.10 Type: PolicyException ... 19
6.2.11 Type: ServiceError ... 19
6.2.12 Enumeration: RetrievalStatus .. 20

6.3 HTTP RESPONSE CODES .. 20
6.3.1 Handling of not allowed HTTP methods. .. 21
6.3.2 Service and Policy exceptions .. 21
6.3.3 HTTP Response Codes in response to Notifications .. 22

APPENDIX A. CHANGE HISTORY (INFORMATIVE) .. 23
A.1 APPROVED VERSION HISTORY ... 23
A.2 DRAFT/CANDIDATE VERSION 1.0 HISTORY ... 23

APPENDIX B. DEPLOYMENT CONSIDERATIONS (INFORMATIVE) .. 25
B.1 PARLAYREST CLIENT APPLICATION EXECUTING IN A SERVER EXECUTION ENVIRONMENT 25
B.2 PARLAYREST CLIENT APPLICATION EXECUTING IN A MOBILE DEVICE EXECUTION ENVIRONMENT 26

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 4 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

B.3 PARLAYREST CLIENT APPLICATION EXECUTING IN A FIXED DEVICE EXECUTION ENVIRONMENT 27

Figures
Figure 1 ParlayREST API accessed from a server execution environment (e.g. 3rd party Service Provider application)

 ... 25

Figure 2 ParlayREST API accessed from a mobile device execution environment ... 26

Figure 3 ParlayREST API accessed from by a fixed device execution environment ... 27

Tables
Table 1: NotificationFormat Values ... 17

Table 2: Time Metrics Values ... 17

Table 3: TimeMetric Structure ... 18

Table 4: ChargingInformation Structure .. 18

Table 5: CallbackReference Structure ... 18

Table 6: ResourceReference Structure .. 18

Table 7: Link Structure ... 19

Table 8: RequestError ... 19

Table 9 ServiceException .. 19

Table 10: PolicyExceptionResponse Codes .. 19

Table 11: ServiceError .. 20

Table 12: RetrievalStatus .. 20

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 5 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

1. Scope
The scope of this specification is to specify an HTTP protocol binding for the set of Parlay X Web Services specifications in
OMA, using REST architectural style.

The specification defines an HTTP protocol binding for an abstract API, based on existing OMA enablers.

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 6 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

2. References
2.1 Normative References

[ISO4217] “ISO 4217 currency names and code elements”, URL: http://www.iso.org/

[JSON] “The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006,
URL: http://www.ietf.org/rfc/rfc4627.txt

[ParlayX_Common] “Open Service Access (OSA); Parlay X web services; Part 1: Common”, Release 8, Third Generation
Partnership Project, URL: http://www.3gpp.org/ftp/Specs/html-info/29-series.htm

[PSA] “Reference Release Package for Parlay Service Access”, Open Mobile Alliance™, OMA-ERP-PSA-
V1_0, URL: http://www.openmobilealliance.org/

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:
http://www.ietf.org/rfc/rfc2119.txt

[RFC2616] “Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, June 1999, URL:
http://www.ietf.org/rfc/rfc2616.txt

[RFC3261] “SIP: Session Initiation Protocol”, J. Rosenberg, et. Al, June 2002, URL:
http://www.ietf.org/rfc/rfc3261.txt

[RFC3986] “Uniform Resource Identifier (URI): Generic Syntax”, T. Berners-Lee, R. Fielding, L. Masinter, January
2005, URL: http://www.ietf.org/rfc/rfc3986.txt

[RFC3966] “The tel URI for Telephone Numbers”, H. Schulzrinne, December 2004, URL:
http://www.ietf.org/rfc/rfc3966.txt

[RFC4122] “A Universally Unique IDentifier (UUID) URN Namespace”, P. Leach, M. Mealling, R. Salz, July 2005,
URL: http://www.ietf.org/rfc/rfc4122.txt

[SCRRULES] “SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:
http://www.openmobilealliance.org/

[XMLSchema1] W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL:
http://www.w3.org/TR/xmlschema-1/

[XMLSchema2] W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL:
http://www.w3.org/TR/xmlschema-2/

2.2 Informative References

[OMADICT] “Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL: http://www.openmobilealliance.org/

[REST_WP] “White Paper on Guidelines for ParlayREST API specifications”, Open Mobile Alliance™,
OMA-WP-Guidelines-for-ParlayREST-API-specifications, URL:http://www.openmobilealliance.org/

[XML2JSON] Open source XML to JSON conversion tool URL: http://forge.morfeo-project.org

http://forge.morfeo-project.org/
http://www.openmobilealliance.org/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-1/
http://www.openmobilealliance.org/
http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc3966.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.openmobilealliance.org/
http://www.3gpp.org/ftp/Specs/html-info/29-series.htm
http://www.ietf.org/rfc/rfc4627.txt
http://www.iso.org/

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 7 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

3. Terminology and Conventions
3.1 Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be
informative.

3.2 Definitions
For the purpose of this TS, all definitions from the OMA Dictionary apply [OMA-DICT].

[N/A] [N/A]

3.3 Abbreviations

API Application Programming Interface

DNS Domain Name Server

HTTP Hypertext Transfer Protocol

ID Identifier

IP Internet Protocol

JSON JavaScript Object Notation

OMA Open Mobile Alliance

PSA Parlay Service Access

REST Representational State Transfer

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 8 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

4. Introduction
To ensure consistency for developers using the ParlayREST enabler, this “Common” technical specification aims to contain
all items that are common across all HTTP protocol bindings using REST architectural style for the various individual
interface definitions, such as namespaces, naming conventions and fault definitions. In addition, data types that are shared
between two or more protocol bindings are included in this specification as well.

4.1 Version 1.0
This version of the ParlayREST Common Technical Specification contains common namespaces, naming conventions and
fault definitions, as well as shared data types for ParlayREST V1_0.

The ParlayREST TSs for version 1.0 addresses the following enablers:

• Short Messaging, as defined in PSA V1_0 [PSA]

• Multimedia Messaging, as defined in PSA V1_0 [PSA]

• Terminal Location, as defined in PSA V1_0 [PSA]

• Payment, as defined in PSA V1_0 [PSA]

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 9 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

5. Common Considerations for ParlayREST
5.1 Use of REST Guidelines
Representational State Transfer (REST) is an architectural style for defining distributed systems. Entities in these systems
communicate using the interfaces they expose. For the purpose of REST API specification development for the ParlayREST
Enabler, guidelines for defining REST bindings for Parlay X have been collected in [REST_WP]. These guidelines include
general key principles that are used in mapping the Parlay X SOAP bindings to REST bindings.

5.2 Namespaces
The namespace for the common data types is:

 urn:oma:xml:rest:common:1

The 'xsd' namespace is used in the present document to refer to the XML Schema data types defined in XML Schema
[XMLSchema1, XMLSchema2]. The use of the name 'xsd' is not semantically significant.

5.3 Unsupported Formats
Servers must return a 406 Not Acceptable error if a message body format (e.g. XML or JSON) requested by the application is
not supported [RFC2616].

5.4 Authoring Style
5.4.1 Names
Names will be meaningful, and not abbreviated in a way that makes the name hard to understand for users of the REST
interfaces that are not literate in computer programming. This does not preclude the use of commonly understood acronyms
within names (e.g. ID) or commonly used abbreviations (e.g. max). However, the resulting name must still be meaningful.

5.4.2 Case usage for names
Two general cases are provided for, both using mixed case names; one with a leading capital letter, the other with a leading
lowercase letter.

Names will start with a letter and be mixed case, with the leading letter of each word capitalized. Words will not be separated
by white space, underscore, hyphen or other non-letter character.

The following data types will have a leading uppercase letter –Type names and element names in an enumeration.

The following data types will have a leading lowercase letter – all other names.

For names consisting of concatenated words, all subsequent words start with a capital. For example, “concatenatedWord” or
“BothCapitals”. If a lowercase name starts with an abbreviation, all characters of the abbreviation are de-capitalized, e.g.
“smsService”.

Resource names are all lowercase.

5.5 Content type negotiation
The Content type of a response used SHALL be established using the following methodology:

As a general rule, content type used in response message body must match content type used in request body. At least XML
and JSON content types MUST be supported.

Support for other content types will be specified on a case-by-case basis (e.g. simple name-value pair parameters may be
accepted in the URL when using GET and www-form-urlencoding may be supported for the request message body when
using POST or PUT).

Content type of the request message body SHALL always be determined by Content-Type header of the HTTP message.

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 10 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

Content type of the response body SHALL be determined using the following methodology. When invoking the API, the
requesting application SHOULD include the ‘Accept’ request header, and provide the primary content type choice, and
optionally OPTIONALLY any supported substitute content types, in this request Accept header.

a. If the server does not support the content type choice listed as priority in the Accept header, it SHALL attempt
to return the next preferred choice if one was provided.

b. If the requesting application does not provide an Accept header or any other indication of desired content type
of the response (see further below), and the request message body content type is XML or JSON, then the server
SHALL provide a response message body with the content type matching that of the request message body. For
example, a request with an XML body and no Accept header will trigger an XML response.

c. If the requesting application requires the response message body to be of a different content type than the
request message body or the format resulting from Accept header negotiations (for which requesting application
may not have sufficient control), it MUST request that by inserting in the URL path “?resFormat={content
type}” (where content type SHALL be either XML or JSON). This option overrides the Accept header provided
by the application, if both are present.

d. If the server cannot return any of the content types based on the negotiation steps described, it SHALL return a
406 response code as per [RFC2616].

e. The default format for notification payloads SHALL be XML, unless the client has specified
notificationFormat=”JSON” in the subscription.

f. Content type SHALL accompany HTTP response codes 200, 201, 400, 409 in the conditions dictated by the
above specified methodology, and MAY be omitted in other cases.

5.6 Resource creation
Typically, a resource is created either following a POST request (to create a child of an existing resource that is addressed by
the request), or following a PUT request (to create a new resource as addressed by the request).

If a resource has been created on the server, the server SHALL return an HTTP response with a "201 Created" header and the
Location header containing the location of the created resource, and SHALL include in the response body either a
resourceReference element, or a representation of the created resource. Note that this allows the server to control the traffic.
Further note that ParlayREST resource representations are designed in such a way that they include a self reference.

5.6.1 Error recovery during resource creation

The following mechanism allows recovery from communication failures that can occur during resource creation using POST.

The client MAY (and in some cases SHOULD) include in the parameter set of the resource creation request the
"clientCorrelator" field which uniquely maps to the resource to be created.

Note that this allows the client to retry a resource-creating request for which it did not receive an answer due to
communication failure, and prevents the duplicate creation of resources on the server side in case of such retry. Note further
that depending on the deployment (e.g. Network Address Translation, Proxies), the server might or might not be able to
distinguish between different clients.

It is therefore RECOMMENDED that the client generates the value of the “clientCorrelator” in such a way that collisions
(i.e. two unrelated requests use the same ”clientCorrelator” value) are impossible or at least highly improbable. The way this
is achieved is out of scope of this specification, however, it is pointed out that for example UUID [RFC4122] provides a way
to implement such a scheme.

In case the server receives a “clientCorrelator” value in a resource-creating POST request, it SHALL do the following:

• in case the request contains a “clientCorrelator” value that has not been used yet to create a resource, the server
SHALL create the resource and respond with "201 Created", as above.

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 11 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

• in case the request contains a “clientCorrelator” value that has already been used to create a resource, the server
responds as follows:

• in case this is a valid repeated attempt by the same client to create the same resource, the server SHALL respond
with "200 OK", and SHALL return a representation of the resource.

• otherwise, it SHALL respond with "409 Conflict", in this case indicating a clientCorrelator conflict. In such case,
the client can retry the request using a new “clientCorrelator” value.

5.7 JSON encoding in HTTP Requests/Responses
5.7.1 Serialization rules: general conversion
Specifications of ParlayREST APIs include XML schema files defining the data structures used by the API, for its direct
usage in XML format. The following are general rules for mapping between the Parlay REST XML and JSON data format:

a. XML elements that appear at the same XML hierarchical level (i.e. either root elements or within the same
XML parent element), are mapped to a set of name:value pairs within a JSON object, as follows:

(i) Each XML element appearing only once at the same hierarchical level (“single element”) is
mapped to an individual name:value pair. The name is formed according to bullet b, while the
value is formed according to bullet c.

(ii) XML elements appearing more than once at the same hierarchical level (“element list”) are
mapped to only one, individual name:value pair. The name is formed according to bullet b, while
the value is a JSON array containing one value per each occurrence of the XML element. The
name is formed according to bullet b whilst values are formed according to bullet c.

(iii) Name and Value of JSON objects will go between “”. Additionally, any JSON representation of an
element of complex type will go between {}, according to [JSON].

b. The name of the name:value pair is the name of the XML elements (i.e. XML_element_name:value)

c. The value is formed as follows:

(i) when the XML element has neither attributes nor child XML elements, the value is equal to the
value of the XML element. In case the element is nill (i.e it has no value), it will be indicated as
having a “null” value within JSON.

(ii) when the XML element has child elements and/or attributes, the value is a JSON object
containing the following name:value pairs:

- one name:value pair per each attribute, where name is the name of the attribute and value is the
value of the attribute.

- one name:value pair associated to the text value (simple type content) of the XML element,
where name is the string “$t” and value is the value of the XML element.

- name:value pairs associated to XML child elements. These name:value pairs are formed in
accordance with bullet a.

Within JSON, there is no need to reflect:

• the first <?xml version="1.0" encoding="UTF-8" ?> tag

• declaration of namespaces or schemaLocations

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 12 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

In order to generate unambiguous JSON from XML instances, based on the rules defined above, the following limitations
need to be imposed on the XML data structures:

• it is not allowed that two different elements from different namespaces have the same name, in case they appear
at the same level

• within an XML parent element, no attribute is allowed to have the same name as a child element of this parent
element.

Note: These general rules have been used to generate the JSON examples from the XML examples in the Technical
Specifications of the ParlayREST Enabler.

5.7.1.1 Utility which implements the general conversion rules (Informative)
The general conversion rules are implemented with UNICA XML2JSON utility, an open source tool, distributed, under a
AGPL license, within the open source community MORFEO [XML2JSON].

5.7.1.2 Example (Informative)
The following is an example illustrating the guidelines:

Input XML content:
<Animals>

<dog>
<name attr="1234">Rufus</name>
<Breed>labrador</Breed>

</dog>
<dog>

<name>Marty</name>
<Breed>whippet</Breed>
<a/>

</dog>
<dog/>
<cat name="Matilda"/>
<a/>

</Animals>

Transformed JSON:
{"Animals": {

"a": null,
"cat": {"name": "Matilda"},
"“dog": [

{
"Breed": "labrador",
"name": {

"$t": "Rufus",
"attr": "1234"

}
},
{

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 13 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

"Breed": "whippet",
"a": null,
"name": "Marty"

},
null

]
}}

5.7.2 Serialization rules: structure-aware conversion
The general approach as defined above relies only on the information in the XML data instance.

The structure-aware approach defined in this section considers information in a data instance (e.g. XML) plus further
information about the data structure definition (such as the allowed number of element occurrences), as documented in the
API specifications and XML Schemas.

This structure-aware approach allows having always the same JSON structure to convey lists of elements.

In this conversion approach, the rules above apply, except for the following modification to the conditions in
a (i) and a (ii):If an element is allowed to appear more than once at the same hierarchical level, it SHALL be
treated according to a (ii) as element list, otherwise it SHALL be treated according to a (i) as single element.

5.7.2.1 Example (Informative)
The following example illustrates the structure-aware serialization.

In the example, the data instance is represented as XML document:

<Animals>
<dog>

<name attr="1234">Rufus</name>
<Breed>labrador</Breed>

</dog>
<dog>

<name>Marty</name>
<Breed>whippet</Breed>

<a/>
</dog>
<dog/>
<cat name="Matilda"/>
<a/>

</Animals>

The information about the data structure is represented as XML schema in this example. Note that the maximum cardinality
of the elements is the only piece of information that is used here.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Animals">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="dog" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 14 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

<xsd:element name="name" minOccurs="0">
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:string">

<xsd:attribute name="attr" type="xsd:string"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="Breed" type="xsd:string" minOccurs="0"/>
<xsd:element name="a" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="cat" maxOccurs="unbounded">

<xsd:complexType>
<xsd:simpleContent>

<xsd:extension base="xsd:string">
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>
<xsd:element name="a"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Transformed JSON:

{"Animals": {
"dog": [

{
"name": {

"$t": "Rufus",
"attr": "1234"

}
"Breed": "labrador",

},
{

"name": "Marty"
"Breed": "whippet",
"a": null,

},
null

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 15 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

]
"cat": [{"name": "Matilda"}],
"a": null,

}}

5.7.3 Rules for JSON-creating and JSON-consuming applications
A JSON-creating application SHALL use either the structure-aware or the general approach, but not both.

Applications that consume a JSON representation SHALL accept the following two different JSON representations for an
array that contains one element:

1. a pair of name and value (e.g. “name”: “one”)

2. a pair of name and array of one value (e.g. “name”: [“one”])

Note: In JSON, according to [RFC4627], the order of objects is not significant, whilst the order of values within an array is.

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 16 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

6. Shared Data Type Definitions
This section contains data type definitions which are shared among two or more REST protocol bindings.

6.1 Address data items
Addresses, unless the specification provides specific additional instruction, MUST conform to the address portion of the URI
definition provided in RFC 3966 [RFC3966] for 'tel:' addresses, [RFC3261] for 'sip:' addresses or the definition given below
for shortcodes or aliased addresses. Optional additions to the address portion of these URI definitions MUST NOT be
considered part of the address accepted by the ParlayREST interfaces, and an implementation MAY choose to reject an
address as invalid if it contains any content other than the address portion.

When processing a 'tel:' URI, as specified in [RFC3966], ParlayREST interface MUST accept national addresses (those not
starting with '+' and a country code) and MUST accept international addresses (those starting with '+' and a country code).

When specified in the definition of a service operation, the URI may contain wildcard characters in accordance with the
appropriate specification (i.e. [RFC3966] or [RFC3261]).

Shortcodes are short telephone numbers, usually 4 to 6 digits in length reserved for telecom service providers' own
functionality. They shall be differentiated from national addresses by the use of a 'short:' rather than 'tel:' URI scheme. The
short code defined in the URI consists of a string of digits with no non-digit characters.

Support for aliases in addresses is provided by use of the URI defined in [RFC3986]. This allows for arbitrary data to be
submitted to the ParlayREST interface. The following is an example of how this could be applied:

<uri scheme>:<generic syntax>

An alias is generally a relatively short character string that holds a scrambled address such that only the application identified
in the URI can expand it.

6.1.1 Charging
This section deals with in-band charging, i.e. passing charging data as part of the API request. To enable this capability to be
provided across a variety of services in a consistent manner, the information to be provided in the message for charging
information is defined as a common charging data type.

6.1.2 Charging data type
The charging information is provided in an XML data type, using the following schema.

<xsd:complexType name="ChargingInformation">
<xsd:sequence>

<xsd:element name="description" type="xsd:string" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element name="currency" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="amount" type="xsd:decimal" minOccurs="0" maxOccurs="1"/>
<xsd:element name="code" type="xsd:string" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

The application accessing the Service provides this information:
• Description is an array of text. The first entry of a list will often be used to provide billing text. This text does not have

specific required content, but would likely include information on the business, the content or service provided, and a
transaction identifier. Credit card statements are a good example of description text provided by different companies.

• When more than one entry is provided, the rest should be references to individual operations relevant to the charging.
Reference should be set to a value provided in a response message to the operation as a unique identifier to correlate
individual operation.

• Currency in which the charge is to be applied. Values for the currency field are defined by ISO 4217 [ISO4217].

• Defines the amount to be charged.

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 17 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

• Code specifies a charging code which references a contract under which this charge is applied. The code identifier is
provided by the Service Provider.

The charging information provided may not be acceptable to the Service Provider. For example, the Service Provider may
limit the amount that may be specified for a particular Service or for a particular Service Requester. If the information
provided is not acceptable, an appropriate fault message may be returned to the requester (SVC0007 and POL0012 are
defined as a generic charging fault, The ‘SVC’ and ‘POL’ service exceptions are defined in [ParlayX_Common]).

Especially in case of charging operation such as creating a charge or refund, it is strongly recommended to convey a list of
relevant operations related to charging over a description part as described above.

This is useful especially when a charging operation is performed after a certain set of operations.

Some of the services may be meaningful to the user only when a certain set of operations is completed. In that case, service
provider may want to charge a user only upon a completion of the entire process, instead of charging per operation. Also,
service provider may want to control the actual amount of charging depending on a certain condition, e.g., service usage
volume, independent of the volume control provided by the network operators. This is also the case where it is preferable to
perform charging operation after a completion of certain set of operations. In these cases where a service provider charges a
user for the consumption of a certain service, the service provider is recommended to provide the references to the individual
operations performed as evidences. This information can be referenced by the relevant entities to ensure the validity of
charging when necessary.

It should be noted that this is for a service provider to provide a list of evidences of their direct use of operations. Any
mapping of underlying operations performed internally in the operator must be performed by the operator if necessary. How
to maintain the consistency between the information kept at service provider and the operators is out of scope. Also, charging
aspects which do not relate to any operations are not covered.

6.2 Common data types
6.2.1 Enumeration: NotificationFormat
List of notification format values.

Enumeration Description

XML Notification about new inbound message would use XML format in the POST request

JSON Notification about new inbound message would use JSON format in the POST request

Table 1: NotificationFormat Values

6.2.2 Enumeration: TimeMetrics
List of time metric values.

Enumeration Description
Millisecond Millisecond
Second Second
Minute Minute
Hour Hour
Day Day
Week Week
Month Month
Year Year

Table 2: Time Metrics Values

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 18 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

6.2.3 Type: TimeMetric
For services that provide service based on a time interval or duration or similar metric, this type is used to specify the time
metric.

Element Type Optional Description
metric TimeMetrics No Metric to use for time measurement
units xsd:int No Number of units of TimeMetrics

Table 3: TimeMetric Structure

6.2.4 Type: ChargingInformation
For services that include charging as an inline message part, the charging information is provided in this data structure.

Element Type Optional Description

description xsd:string
[1..unbounded]

No An array of description text to be use for information and billing text

currency xsd:string Yes Currency identifier as defined in ISO 4217 [ISO4217]
amount xsd:decimal Yes Amount to be charged
code xsd:string Yes Charging code, referencing a contract under which the charge is

applied

Table 4: ChargingInformation Structure

6.2.5 Type: CallbackReference
An application can use the CallbackReference data structure to subscribe to notifications.

If a parameter callbackData has been passed in a particular subscription, the server MUST copy it into each notification
which is related to that particular subscription.

Element Type Optional Description
notifyURL xsd:anyURI No Notify Callback URL
callbackData xsd:string Yes Data the application can register with the server when

subscribing to notifications, and that are passed back
unchanged in each of the related notifications. These
data can be used by the application in the processing of
the notification, e.g. for correlation purposes.

notificationFormat NotificationFormat Yes Default: XML
Application can specify format of the resource
representation in notifications that are related to this
subscription. The choice is between {XML, JSON}

Table 5: CallbackReference Structure

Note: In case the application requires correlating notifications to the related subscription, it can either submit a different
notifyURL in each subscription, or use the optional callbackData parameter as a correlator.

6.2.6 Type: ResourceReference
Element Type Optional Description
resourceURL xsd:anyURI No The URL that addresses the resource

Table 6: ResourceReference Structure

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 19 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

The resourceReference element of type ResourceReference is defined as a root element in the XSD.

6.2.7 Type: Link

Attribute Type Optional Description
rel xsd:string No Describes the relationship between the URI and the resource
href xsd:anyURI No URI

Table 7: Link Structure

An element of type Link can be provided by the server to point to other resources that are in relationship with the
resource The rel attribute is a string. The possible values for the string are defined in each REST enabler.
Rel and href are realized as attributes in the XSD.

6.2.8 Type: RequestError
Element Type Optional Description
link Link[0..unbounded] Yes Link to elements external to the resource
serviceException ServiceException Choice Exception Details
policyException PolicyException Choice Exception Details

Table 8: RequestError

A requestError element of type RequestError is defined as a root element in the XSD.

6.2.9 Type: ServiceException
Element Type Optional Description
messageId xsd:string No Message identifier, with prefix SVC
text xsd:string No Message text, with replacement variables marked with %n, where

n is an index into the list of <variables> elements, starting at 1
variables xsd:string

[0..unbounded]
Yes Variables to substitute into Text string

Table 9 ServiceException

6.2.10 Type: PolicyException
Element
name

Element type Optional Description

messageId xsd:string No Message identifier, with prefix POL
text xsd:string No Message text, with replacement variables marked with %n, where

n is an index into the list of <variables> elements, starting at 1
variables xsd:string

[0..unbounded]
Yes Variables to substitute into Text string

Table 10: PolicyExceptionResponse Codes

6.2.11 Type: ServiceError
In a response to a request, ServiceError is used when an operation involving multiple items fails for only some of the items,
whereas ServiceException is used where the entire operation fails.

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 20 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

In notifications, ServiceError is always used to indicate a notification termination or cancellation.

Element Type Optional Description

messageId xsd:string No Message identifier, either with prefix SVC or with prefix POL

Text xsd:string No Message text, with replacement variables marked with %n, where n is
an index into the list of <variables> elements, starting at 1

Variables xsd:string
[0..unbounded]

Yes Variables to substitute into text string

Table 11: ServiceError

6.2.12 Enumeration: RetrievalStatus
Enumeration Description

Retrieved Data retrieved. Current data is provided

NotRetrieved Data not retrieved, current data is not provided (does not indicate an error, no
attempt may have been made). Note that this field is useful in case a list of
addresses are requested, some items could be marked as "NotRetrieved" in case
retrieval could not be attempted for some reason, e.g. to avoid time outs

Error Error retrieving data

Table 12: RetrievalStatus

6.3 HTTP Response Codes
Following is the list of commonly used HTTP response codes for ParlayREST.

200 – Success

201 – Created

204 – No Content

304 - ConditionNotMet - Not Modified: The condition specified in the conditional header(s) was not met for a read operation.

400 - Invalid parameters in the request

401 - Authentication failure

403 - Application don't have permissions to access resource due to the policy constraints (request rate limit, etc)

404 - Not Found - The specified resource does not exist.

405 - Method not allowed by the resource

409 - Conflict

411 - Length Required: The Content-Length header was not specified.

412 - Precondition Failed: The condition specified in the conditional header(s) was not met for a write operation.

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 21 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

413 - RequestBodyTooLarge - Request Entity Too Large: The size of the request body exceeds the maximum size permitted.

416 - InvalidRange - Requested Range Not Satisfiable: The range specified is invalid for the current size of the resource.

500 - Internal server error

503 - ServerBusy - Service Unavailable: The server is currently unable to receive requests. Please retry your request.

6.3.1 Handling of not allowed HTTP methods.
If a method is not allowed by the resource, then server SHOULD also include the ‘Allow: {GET|PUT|POST|DELETE} field
in the response as per section 14.7 [RFC2616].

6.3.2 Service and Policy exceptions
In case of errors, additional information in the form of Exceptions MAY be included in the HTTP response.

Exceptions are defined with three data elements.

The first data element is a unique identifier for the message. This allows the receiver of the message to recognize the message
easily in a language-neutral manner. Thus applications and people seeing the message do not have to understand the message
text to be able to identify the message. This is very useful for customer support as well, since it does not depend on the reader
to be able to read the language of the message.

The second data element is the message text, including placeholders (marked with %) for additional information. This form is
consistent with the form for internationalization of messages used by many technologies (operating systems, programming
environments, etc.). Use of this form enables translation of messages to different languages independent of program changes.

The third data element is a list of zero or more strings that represent the content to put in each placeholder defined in the
message in the second data element with the first entry mapping to the placeholder %1.

6.3.2.1 Service exception
The Service exception is provided in an XML data type, using the following schema.

<xsd:complexType name="ServiceException">
<xsd:sequence>

<xsd:element name="messageId" type="xsd:string"/>
<xsd:element name="text" type="xsd:string"/>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="variables" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

When a service is not able to process a request, and retrying the request with the same information will also result in a failure,
and the issue is not related to a service policy issue, then the service will issue a fault using the ServiceException fault
message. A Service Exception uses the letters 'SVC' at the beginning of the message identifier. The ‘SVC’ service exceptions
are defined in [ParlayX_Common]

Examples of Service exceptions include invalid input, lack of availability of a required resource or a processing error.

6.3.2.2 Policy exception
The policy exception is provided in an XML data type, using the following schema.

<xsd:complexType name="PolicyException">
<xsd:sequence>

<xsd:element name="messageId" type="xsd:string"/>
<xsd:element name="text" type="xsd:string"/>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="variables" type="xsd:string"/>

</xsd:sequence>

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 22 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

</xsd:complexType>

When a service is not able to complete because the request fails to meet a policy criteria, then the service will issue a fault
using the Policy Exception fault message. To clarify how a Policy Exception differs from a Service Exception, consider that
all the input to an operation may be valid as meeting the required input for the operation (thus no Service Exception), but
using that input in the execution of the service may result in conditions that require the service not to complete. A Policy
Exception uses the letters 'POL' at the beginning of the message identifier. The ‘POL’ service exceptions are defined in
[ParlayX_Common]

Examples of Policy exceptions include privacy violations, requests not permitted under a governing service agreement or
input content not acceptable to the service provider.

6.3.3 HTTP Response Codes in response to Notifications
Handling of HTTP response codes sent by the client application, in response to a notification from the server:

1. in case of HTTP 2xx response codes, server assumes the notification has been sent successfully.
2. in case of HTTP response codes other than 2xx, the handling is left to the server implementation. The server MAY

support different actions as dictated by a service provider policy (out-of-scope for this specification).

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 23 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

Appendix A. Change History (Informative)
A.1 Approved Version History

Reference Date Description
n/a n/a No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History
Document Identifier Date Sections Description

Draft Versions
OMA-TS-ParlayREST-Common-V1_0

25 May 2009 All Baseline TS as per agreed:
 OMA-ARC-REST-2009-0002-INP_ParlayREST_TS_document
Name changed to ParlayREST-Common
Versionning fixed

11 Nov 2009 2, 3, 4, 5, 6 Introduce initial structure (OMA-ARC-REST-2009-0064R01)
2 Dec 2009 5, 6 Added OMA-ARC-REST-2009-0085R01-

CR_Update_to_COMMON_TS.doc and OMA-ARC-REST-2009-0080R03-
INP_ParlayREST_Link_issue.doc and OMA-ARC-REST-2009-0111-
INP_Common_TS_Naming_Conventions and OMA-ARC-REST-2009-
0100R01-CR_REST_Common_TS.doc

3 Dec 2009 1 Update from OMA-ARC-REST-2009-0112-
INP_Cleanup_Scope_of_Common_TS.doc

3 Dec 2009 2 Updated from OMA-ARC-REST-2009-0114-
INP_SMS_TS_Reference_Section

3 Dec 2009 3 Updated from OMA-ARC-REST-2009-0115R01-
INP_SMS_TS_Section_3.doc

3 Dec 2009 App. A Added from OMA-ARC-REST-2009-0122R01-
CR_Deployment_Considerations

7 Dec 2009 All Document clean-up, added lost Exception element tables.

11 Dec 2009 all Update after final CC, see OMA-ARC-REST-2009-0170-
MINUTES_11Dec2009_CC for details
 OMA-ARC-REST-2009-0175R01-
CR_Authorization_and_protection_of_sensistive_data

16 Dec 2s09 All Editorial Fixes
 History table

1 Feb 2010 All Applide the rule from OMA-ARC-REST-2010-0006R02 and OMA-ARC-
REST-2010-0007R03

2 Feb 2010 All Applied G002, A002, A001, A003, A004, A005, A006, A007, A008, A009,
A010, A011, A012, A013, A014, A015, A016

4 Feb 2010 5 Added OMA-ARC-REST-2010-0048-
CR_content_negotiation_case_convention_common, solving F011

7 Feb 2010 All Changed font colors, and spelling
C0076

15 Feb 2010 Added 5.6
6.2.5
6.2.6

OMA-ARC-REST-2010-0063R01-
INP_Closing_proposal_for_echoing_issue.doc
OMA-ARC-REST-2010-0059-CR_Some_fixes_TS_Common.doc

16 Feb 2010 Added 5.7 OMA-ARC-REST-2010-0060R01-CR_Xml2json_conversion_common.doc
18 Feb 2010 5.4 Reapplied OMA-ARC-REST-2010-0048-

CR_content_negotiation_case_convention_common.doc
25 Feb 2010 Added Added OMA-ARC-REST-2010-0074-

INP_JSON_type_in_Notifications.doc and
OMA-ARC-REST-2010-0081R01-CR_Correlator_resolution_TS_Common

26 Feb 2010 Added Added OMA-ARC-REST-2010-0073R01-
CR_Echoing_response_decision_not_compliant_with__RFC_2616, the
SHALL solution

27 Feb 2010 Corrected NotificationFormat, reapplied #74
07 Mar 2010 5.7.2 Added OMA-ARC-REST-2010-0062R02-CR_XML2JSONTool.doc
19 Mar 2010 All Updates from walk-through
26 Mar 2010 All Editorial updates/formatting

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 24 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

Document Identifier Date Sections Description
30 Mar 2010 6.3 Editorial updates:

 Caption for Table 10 fixed
 Numbering of 6.3 fixed

Candidate Version:
OMA-TS-ParlayREST-Common-V1_0

27 Apr 2010 All Status changed to Candidate by TP:
 OMA-TP-2010-0186-
INP_ParlayREST_V1_0_ERP_for_Candidate_Approval

Draft Versions:
OMA-TS-ParlayREST-Common-V1_0

09 Jun 2010 5.5
5.6
6.2.9
6.2.11
6.3, 6.3.3

Implemented Agreed Changes:
 OMA-ARC-REST-2010-0180-
CR_Fixing_implementation_of_CR83R01_TS_Common
 OMA-ARC-REST-2010-0248-CR_Wrong_capitalization_in_ServiceError.
 OMA-ARC-REST-2010-0251-CR_common_1.0_RetrievalStatus
 OMA-ARC-REST-2010-0263R01-
CR_Common_handling_HTTP_responses

11 Jun 2010 6.2.11 Implemented Agreed Change:
 OMA-ARC-REST-2010-0231R01-
INP_CR_Common_TS_add_ServiceError_structure

Candidate Version:
OMA-TS-ParlayREST-Common-V1_0

24 Aug 2010 All Status changed to Candidate by TP:
OMA-TP-2010-0359-
INP_ParlyREST_V1_0_ERP_for_Candidate_reapproval

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 25 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

Appendix B. Deployment Considerations (Informative)

Applications using the ParlayREST API can be categorized by their execution environment:

• Application is a ParlayREST client application executing in a server execution environment (e.g. a 3rd party application).

• Application is a ParlayREST client application executing in a mobile device execution environment.

• Application is a ParlayREST client application executing in a fixed device execution environment.

ParlayREST API client can execute in any of the above execution environments.

Issues that are dependent on the ParlayREST execution environment and can impact strategic deployment decisions,
interoperability, and scalability include (non-exhaustive list):

• Notifications sent from ParlayREST server to ParlayREST client application, for example:

i. There must be an active "listener" on the application host (in this case the client device), ready to
receive the incoming notification via the HTTP protocol.

ii. This does not have to be the application itself, but at least some host service/client which can
invoke the specific application when needed.

iii. In a client-server HTTP binding, this requires that the client has the support of an HTTP listener
service.

• Security aspects (e.g. ParlayREST client application authentication)

While solutions to particular issues related to the ParlayREST client application execution environment are out-of-scope for
the ParlayREST enabler, other OMA enablers should be re-used (where applicable) to address such particular issues.

B.1 ParlayREST client application executing in a server
execution environment

Figure 1 ParlayREST API accessed from a server execution environment (e.g. 3rd party Service Provider application)

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 26 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

The RESTful API exposed by ParlayREST server deployed in the Network Operator service layer domain, may be accessed
by a ParlayREST client application executing on a server resident in the Service Provider domain.This deployment can
support all resources and operations specified in ParlayREST. There are no particular issues with support of notifications
from ParlayREST server to ParlayREST client application. For security aspects, see the Common TS security considerations
section.

B.2 ParlayREST client application executing in a mobile device
execution environment

Figure 2 ParlayREST API accessed from a mobile device execution environment

The RESTful API exposed by ParlayREST server deployed in the Network Operator service layer domain, may be accessed
by a ParlayREST client application executing on an end user mobile device. This deployment can support most resources and
operations specified in ParlayREST. There are however particular issues with support of notifications from ParlayREST
server to ParlayREST client application:

• Typically in mobile devices, the client does not have the support for an HTTP listener service. The
specified client notification APIs may have to be delivered by alternative means. OMA Push [Push]
should be considered to be used to deliver the notifications to the ParlayREST client application.

• It must be possible to actually deliver the notification to the ParlayREST client application, i.e. there
must be no boundary across which the protocol is typically blocked. In a client-server HTTP binding,
this will typically be an issue as

o The client is typically within some private network behind a firewall (e.g. PLMN Operator
mobile network or home network)

o The client does not have a fixed IP address or an IP address that is resolvable via DNS.

o In such cases, a notification service such as OMA Push should be considered to be used to
bridge the firewall border and resolve the target address of the notification to an actual client
address.

For security aspects, see the Common TS security considerations section.

OMA-TS-ParlayREST_Common-V1_0-20100824-C Page 27 (27)

 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20090101-I]

B.3 ParlayREST client application executing in a fixed device
execution environment

Figure 3 ParlayREST API accessed from by a fixed device execution environment

The RESTful API exposed by a ParlayREST server deployed on the Network Operator service layer domain, may be
accessed by a ParlayREST client application executing on a fixed device connected to the Network Operator.

This deployment can support most resources and operations specified in ParlayREST. Some issues with support of
notifications from ParlayREST server to ParlayREST client applications may be similar to those mentioned in Appendix B.2.
Solutions to those issues may however rely on other mechanisms (e.g. use of COMET).

For security aspects, see the Common TS security considerations section.

	1. Scope
	2. References
	2.1 Normative References
	2.2 Informative References

	3. Terminology and Conventions
	3.1 Conventions
	3.2 Definitions
	3.3 Abbreviations

	4. Introduction
	4.1 Version 1.0

	5. Common Considerations for ParlayREST
	5.1 Use of REST Guidelines
	5.2 Namespaces
	5.3 Unsupported Formats
	5.4 Authoring Style
	5.4.1 Names
	5.4.2 Case usage for names

	5.5 Content type negotiation
	5.6 Resource creation
	5.6.1 Error recovery during resource creation

	5.7 JSON encoding in HTTP Requests/Responses
	5.7.1 Serialization rules: general conversion
	5.7.1.1 Utility which implements the general conversion rules (Informative)
	5.7.1.2 Example (Informative)

	5.7.2 Serialization rules: structure-aware conversion
	5.7.2.1 Example (Informative)

	5.7.3 Rules for JSON-creating and JSON-consuming applications

	6. Shared Data Type Definitions
	6.1 Address data items
	6.1.1 Charging
	6.1.2 Charging data type

	6.2 Common data types
	6.2.1 Enumeration: NotificationFormat
	6.2.2 Enumeration: TimeMetrics
	6.2.3 Type: TimeMetric
	6.2.4 Type: ChargingInformation
	6.2.5 Type: CallbackReference
	6.2.6 Type: ResourceReference
	6.2.7 Type: Link
	6.2.8 Type: RequestError
	6.2.9 Type: ServiceException
	6.2.10 Type: PolicyException
	6.2.11 Type: ServiceError
	6.2.12 Enumeration: RetrievalStatus

	6.3 HTTP Response Codes
	6.3.1 Handling of not allowed HTTP methods.
	6.3.2 Service and Policy exceptions
	6.3.2.1 Service exception
	6.3.2.2 Policy exception

	6.3.3 HTTP Response Codes in response to Notifications

