
 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

White Paper on Guidelines for REST API specifications in OMA
Candidate – 11 Jan 2011

Open Mobile Alliance
OMA-WP-Guidelines_for_REST_API_specifications-20110111-C

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 2 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of
this document and the information contained herein, and makes no representations or warranties regarding third party IPR,
including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you
must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in
the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

http://www.openmobilealliance.org/ipr.html
http://www.openmobilealliance.org/UseAgreement.html

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 3 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

Contents
1. SCOPE .. 4
2. REFERENCES .. 5
3. TERMINOLOGY AND CONVENTIONS .. 6

3.1 CONVENTIONS ... 6
3.2 DEFINITIONS .. 6
3.3 ABBREVIATIONS .. 6

4. INTRODUCTION ... 7
5. PRINCIPLES FOR DEFINING REST APIS IN OMA ... 8

5.1 API DOCUMENTATION .. 10
5.1.1 API Data Types .. 10

5.2 ERROR HANDLING .. 11
5.3 EXAMPLES ... 11
5.4 COMMON DATA FORMATS .. 12
5.5 INTERNATIONALIZATION .. 13
5.6 BACKWARDS COMPATIBILITY .. 14

5.6.1 XML based APIs.. 14
5.6.2 JSON based APIs ... 16

5.7 FORWARD COMPATIBILITY, EXTENSIBILITY ... 16
5.7.1 XML based APIs.. 16
5.7.2 JSON based APIs ... 17

5.8 ENCODING AND SERIALIZATION DETAILS FOR MIME FORMAT ... 18
5.9 LIGHT-WEIGHT RESOURCES ... 19

APPENDIX A. CHANGE HISTORY (INFORMATIVE) .. 24

Figures
Figure 1 Clients using older versions of the API ... 14

Figure 2 Backwards compatibility for operations... 15

Figure 3 Upgraded servers returning a response to legacy clients .. 16

Figure 4 New versions of clients making requests to existing, non-upgraded servers ... 16

Tables
Table 1: API Data Type Example... 11

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 4 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

1. Scope
This white paper contains guidelines for REST API specifications developed in OMA.

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 5 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

2. References

[Fielding] “Architectural Styles and the Design of Network-based Software Architectures” , Roy Fielding,
2000, URL: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[HTML FORMS] “HTML Forms”, W3C Recommendation,
URL:http://www.w3.org/TR/html401/interact/forms.html

[JSON] Java Script Object Notation, URL:http://www.json.org/

[OMADICT] “Dictionary for OMA Specifications”, Version 2.7, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_7, URL:http://www.openmobilealliance.org/

[REST_TS_Common] “Common definitions and specifications for OMA REST interfaces”, Open Mobile Alliance™,
OMA-TS-REST_Common-V1_0, URL:http://www.openmobilealliance.org/

[RFC1738] “Uniform Resource Locations”, ”, T. Berners-Lee, L. Masinter, M. McCahill, December 1994,
URL:http://www.ietf.org/rfc/rfc1738.txt

[RFC2388] “Returning Values from Forms: multipart/form-data”, L. Masinter, August, 1998,
URL:http://www.ietf.org/rfc/rfc2388.txt

[RFC2616] “Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, June 1999,
URL:http://www.ietf.org/rfc/rfc2616.txt

[RFC3986] “ URI Generic Syntax”, T. Berners-Lee et al., January 2005, URL:
http://www.ietf.org/rfc/rfc3986.txt

[RFC4627] “Application/json media type”, D. Crockford, July 2006,
URL:http://www.ietf.org/rfc/rfc4627.txt

http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2388.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.json.org/
http://www.w3.org/TR/html401/interact/forms.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 6 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

3. Terminology and Conventions
3.1 Conventions
This is an informative document, which is not intended to provide testable requirements to implementations.

3.2 Definitions

[N/A] [N/A]

3.3 Abbreviations

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CRUD Create, Read, Update, Delete

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

JSON Java Script Object Notation

MIME Multipurpose Internet Mail Extensions

MMS Multimedia message Service

OMA Open Mobile Alliance

REST Representational State Transfer

SMS Short Message Service

TS Technical Specification

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 7 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

4. Introduction
This document is the OMA Guidelines for REST API specification development and is intended to provide the guidelines for
defining REST interfaces in OMA.

The REST (Representational State Transfer) architecture was defined in 2000 by Dr Roy Fielding [Fielding]. The key
principles of REST are that clients and servers (typically in an HTTP system) interact via requests and responses. These
requests/responses transfer representations of a resource; which is identified and addressed by a Uniform Resource Identifier
(URI). REST promotes the use of HTTP verbs (GET, POST, PUT, and DELETE) to allow the client to query the current
state of the resource, or to change it. By reusing these verbs, as well as HTTP principles of authentication, caching and
content negotiation; it is possible to build relatively simple APIs based on existing Web standards [RFC2616].

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 8 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

5. Principles for defining REST APIs in OMA
1. A key guideline is that REST APIs are intended for use by typical web developers. These developers are assumed

not to have a detailed understanding of telecoms services and will need to be able to leverage the OMA specified
REST services as simply as they would leverage services from major web players, service providers or platforms.

Therefore, OMA specified REST APIs should provide the same level of easy-to-use as other popular REST services
provided on the Web. Wherever technically feasible, REST APIs would be used by applications acting on behalf of
the end user (e.g. web site, portal), other specialized applications (sms campaign managers, various notification
services etc) or applications located on the end user device (e.g. mobile phone, dvd player). The cases where the
OMA specified REST APIs specified do not serve well a particular client environment have to be identified,
analyzed, documented and addressed (in the same Work Item, or a different Work Item, as deemed appropriate).

2. REST API specifications should conform to the REST & HTTP practices, in particular:

a. Services should be defined in terms of resources that are addressable as URIs.

b. Use of nouns in URIs is recommended over the use of verbs
• URIs identify resources
• HTTP methods identify Operations

c. Use HTTP verbs, i.e. POST, GET, PUT, DELETE for CRUD (Create, Read, Update, Delete) operations,

for all interfaces for which CRUD is a good fit , using the following mapping:
• POST

• POST maps to Create, if the HTTP client sends a request to the HTTP server to create a
subordinate of the specified resource (a.k.a. creating a new member of the resource collection),
using some server-side algorithm.

• POST maps to Update if the HTTP client sends a request to the HTTP server to partially update
the specified resource, or to update one or more subordinates of the specified resource

• Note: In certain cases, POST may be used when the operation cannot be mapped to a CRUD
operation. For example transformational update of the resource space is usually difficult to map to
a CRUD operation (e.g. batch update, etc).

• GET maps to Read. GET must be safe (i.e. it cannot change a resource), and must be idempotent (i.e.
the outcome of calling it multiple times is the same as calling it once - unless somebody else changed
the resource between calls)

• PUT
• In case the URI addressed by the PUT operation points to an existing resource, PUT maps to a

complete Update of the resource, and must be idempotent.
• In case the URI addressed by the PUT operation does not point to an existing resource, PUT maps

to Create of that resource, if that operation is permitted.
• DELETE maps to Delete, and must be idempotent

d. Use standard HTTP Status codes in responses for both successful and failed operations. In the case of a

failed operation additional status information (if available) will be returned in the body of the response.

Use of HTTP Status codes in response should be consistent with [RFC 2616] and in case of successful
operations it is recommended to use the following Status codes:

POST: for successful response, these are the allowed values:

200 (OK): when no resource URL is provided in the response but the body of the response includes the
entity that describes the result.

201 (Created): if a resource has been created on the origin server, the body of the message SHOULD
contain an entity which describes the status of the request and refers to the new resource, and a Location
header

204 (No content): when no resource URL is provided in the response and it does not provide a body.

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 9 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

PUT:

200 (OK) or 204(No Content): they are used when the existing resource has been modified (idempotent).

201 (Created): MUST be used when a new resource is created.

GET: (idempotent)

200 (OK): successful response that includes the entity requested.

DELETE: (idempotent)

200 (OK): for a successful response if the response includes an entity describing the status.

202 (Accepted): if the action has not yet been enacted.

204 (No Content): if the action has been enacted but the response does not include an entity.

3. The content type used in responses is established using the following methodology:

As a general rule, content type used in response message body must match content type used in request body. In
case this is not possible, content type negotiation can be used. The methodology for content type negotiation is
based on the “Accept” HTTP header in the request to signal the supported content types. A parameter of name
“resFormat” can be given to override the information in this header. The methodology for content type negotiation is
specified further in [REST_TS_Common].

At least XML and JSON content types are supported, with other content types optionally supported on a case-by-
case basis to be specifically documented (e.g. simple name-value pair parameters may be accepted in the URL when
using GET and www-form-urlencoding may be supported for the request message body when using POST).

4. It is recommended to specify REST API versioning by inserting the API version in the resource URI path (e.g. a 2.0
version is a completely separate set of resources/endpoints from the previous 1.0 version).

a. Minor API revisions are backwards compatible (in general, unknown parameters should be ignored for
forwards compatibility) and major revisions are a distinct set of paths.

b. If a change is made to the XML request/response format that is not backwards compatible, the major
version number must be incremented, otherwise the minor version number is incremented.

c. The namespace URN of the XML schemas only contains the major version number (e.g.
urn:oma:xsd:rest:common:1).

d. The full version number (major and minor version number separated by a “.” character) is given in the
“version” attribute in the <schema> element of the XML schema.

e. The resource URI only includes the major version number in the path.
f. In the case that the API version is not present in the URL path the server will assume that the version is the

latest supported by the implementation.

Example: If service X supports version 1.0, 1.1, .. and 2.0, 2.1, etc, then you use:
http://example.com/service/1/smsservice for the 1.0, 1.1, 1.x version and
http://example.com/service/2/smsservice for the 2.0, 2.1, 2.x version of the smsservice.

5. Callback APIs specification and client implementations of the callback APIs have to comply with the remaining set
of guidelines in this cookbook. Wherever necessary, callback functionality (i.e. the ability for the enabler to notify
the application of particular events subscribed to) will be supported in the most appropriate manner consistent with
the general REST architectural style chosen.

a. For example, in the case when the client resides in a server-like environment a request URL may be passed
by the client on which it can be notified of particular events that the client subscribed to.

b. In all cases, other approaches may be followed on a case-by-case basis, using an analysis of specific client
access particularities.

6. The API specifications should include examples. The example in the REST interface description should avoid using
real host and real company name (use “www.example.com” instead of “www.carrier.com” and
“myapp.developer.com”).

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 10 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

7. If multiple attachments need to be sent as part of the client request or callback request from the server, then MIME
Content-Type multipart/related should be used.

8. APIs should support ability to add extra data elements in the request/reply body and extra query parameters in the
URL to enhance usability.

Note: Client and Server should ignore unrecognized parameters and data elements for forward compatibility reasons.

9. All URLs in the API specifications are for illustration purposes only. Particular implementation of the API can use
different URLs structure and clients have to discover right URLs to use in runtime (no hard coding URLs into the
client code) with the exception of the initial (home/starting URLs). This is needed to ensure client portability
between different implementations of the API by different vendors. It would also allow server implementation to
evolve without requiring clients to adopt new URL structure or hierarchy. Clients are free to cache URLs for the
future use according to general HTTP/HTML practices; for a detailed description of the cache mechanism see [RFC
2616]. In other words: they don’t have to start from the API home page all the time.

10. If a message contains sensitive data, such as passwords, account numbers, and card numbers (as in account
management and payment APIs), security consideration to protect these information is required.

11. The HTTP protocol does not place any a priori limit on the length of a URI according to [RFC2616]. However,
some old implementations have a limitation, that is, 256 bytes, while other implementations have at least 4000
characters limitation. GET-based forms with a URI above 255 bytes may get response including 414 (Request-URI
Too Long) status code. In the case where the URL would exceed 4000 characters, the API design would consider
using POST method instead of GET on a case by case basis.

5.1 API Documentation
Each REST API should be specified in a resource-oriented manner and the resources used by the API should be defined and
explained. Use Cases and Sequence Diagrams should be provided. Each REST API specification must include the following
definitions:

• API resource definitions, together with an overall structure if multiple resources are defined in the API.

• Definition of HTTP operations (HTTP verbs: GET, POST, PUT, DELETE) for each resource:

• Data type definition, such as complex data type and enumeration type.

• Description of the operation

• Request

• Response

• Referenced faults

All parameters in URLs must be URL encoded, for example an endUserId and description parameters would be encoded as
endUserId=tel%3A%2B447990123456 and description=Some%20billing%20information. They
should be listed in examples as unencoded for readability purposes.

5.1.1 API Data Types
REST API data types and enumeration types must be specified with an associated detailed description including optionality.
This will enable a developer to understand how to use the parameter. API data type definitions must be consistent and follow
recognized standard definitions; the following table gives an example:

Element Type Optional Description

destinationAddress xsd:anyURI No Number associated with the invoked
Message service, i.e. the
destination address used by the

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 11 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

terminal to send the message.

senderAddress xsd:anyURI No Indicates message senderAddress.

message xsd:string No Text of the message

dateTime xsd:dateTime Yes Time when message was received
by operator

resourceURL xsd:anyURI Yes Self referring URL

link common:Link[0..unbounded] Yes Links to other resources that are in
relationship with the resource

id xsd:string No Server generated messageId
entifier

Table 1: API Data Type Example

Furthermore, common data types should be reused consistently across multiple APIs.

5.2 Error Handling
After receiving and interpreting a REST request message, a server responds with an HTTP response message, as defined in
[RFC2616].

Response = Status-Line
*((general-header
| response-header
| entity-header) CRLF)
CRLF
[message-body]

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF
Standard Status-Code and Reason phrase are used. For all faults additional information should when applicable, be returned
to the requestor in the message body. The message body should contain the error details, such as an error code as well as an
error description if available. The information returned should be self-contained, so the client does not need to save any state
information. For examples provide tables with the supported resource formats.

5.3 Examples
The API specifications should include examples. Examples in the REST interface description should avoid using real host
and real company names, for example use “www.example.com” instead of specifics such as “www.carrier.com” or
“myapp.developer.com”.

Furthermore the REST interface description should include detailed sample Request and Response messages, in HTTP-XML
format for the convenience of the reader. For example, a sample REST <GetSmsDeliveryStatusRequest> Request should
include:

GET .../{apiVersion}/smsmessaging/{senderAddress}/outbound/requests/{requestId}
HTTP/1.1
Accept: application/xml
Host: www.example.com:80

And the resulting sample REST Response should include:

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 12 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

HTTP/1.1 200 OK
Content-Type: application/xml
Date: Thu, 04 Jun 2009 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<MessageReferences>

<OutboundMessageReference
<address>tel:1350000001</address>
<id>{requestId1}</id>

<resourceURL>http://{serverRoot}/{apiVersion}/smsmessaging/{senderAddress}/outbound
/requests/{requestId1}</resourceURL>

<DeliveryInfos>
<DeliveryInfo>
<DeliveryStatus>DeliveredToNetwork</DeliveryStatus>
<address>tel:+1350000001</address>

</DeliveryInfo>
</DeliveryInfos>

</OutboundMessageReference>
<OutboundMessageReference>
<address>tel:+1350000991</address>
<address>tel:+1350000992</address>
<id>{requestId2}</id>

<resourceURL>http://{serverRoot}/{apiVersion}/smsmessaging/{senderAddress}/outbound
/requests/{requestId2}</resourceURL>

<DeliveryInfos>
<DeliveryInfo>
<DeliveryStatus>DeliveredToNetwork</DeliveryStatus>
<address>tel:+1350000001</address>

</DeliveryInfo>
<DeliveryInfo>
<DeliveryStatus>DeliveredToTerminal</DeliveryStatus>
<address>tel:+1350000001</address>

</DeliveryInfo>
</DeliveryInfos>

</OutboundMessageReference>
...

</MessageReferences>

5.4 Common Data Formats
5.4.1.1 XML

POST and PUT requests may include data in XML format. An application/xml body should be used in these cases. This
XML format needs to be compliant with the corresponding XML Schemas for the data types. If the XML contains pointers to
the OMA SUP schema files, it can be validated online.

Responses may also include XML body.

5.4.1.2 JSON

POST and PUT requests may include data in JSON format [JSON]. Details on this format can be found in JSON [RFC4627].
Responses may also include bodies in JSON format. In [REST_TS_Common] serialization rules for JSON encoding in HTTP
Request/responses are specified.

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 13 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

5.4.1.3 www-form-urlencoded

As an alternative to XML or JSON, input data in requests (but not responses) may be submitted in application/x-www-form-
urlencoded format as specified in [HTML FORMS]. Usually, this format is used as the last portion of a URL as defined by
[RFC2616]. In ParlayREST, this applies to GET/DELETE requests where this format can be used in query parameters.

In POST requests, this format can also be used, to support the use case of submitting a representation of a data structure
directly from HTML forms by a web browser. This will imply the inclusion of an application/x-www-form-urlencoded body.
As web browsers use POST to submit these forms, it usually does not make sense to use this format for the body of PUT
requests. The format is subject to some restrictions in the character set of the exchanged information – unsafe and reserved
characters must be escaped using “percent encoding” [RFC3986]. I.e., a character is replaced by the string as %HH where
HH stands for the hexadecimal representation of the ASCII code of the character.

Most ParlayREST specifications define a www-form-urlencoded representation at least for some POST messages in an
Appendix. In case no such message formats are defined in a particular specification, it is recommended to include
information about why this has been omitted; otherwise, the following serialization guidelines apply.

5.4.1.3.1 Serialization guidelines for www-form-urlencoding in Requests.

The following are general rules for mapping between the XML and application/x-www-form-urlencoded formats:

a. When using this serialization in POST requests, data will be included in the body of the request and not in the URL. To
do this, Content-Type: application/x-www-form-urlencoded will be used.

b. Where one of the elements is a complex type, only the simple type child sub (or sub-sub)-elements will be included in
the URL encoded data.

c. In the absence of XML hierarchy issues, encoding shall look like:
subelement1=valueA&

subelement2=valueB&

attribute=valueC

The use of www-form-urlencoded should be specified for each API on a case-by-case basis. This should be documented
by means of a table with the result of removing XML hierarchy levels.

If none of the above applies, the use of www-form-urlencoded is not recommended.

Within www-form-urlencoded bodies, there is neither an indication of the first <?xml version="1.0" encoding="UTF-8" ?>
nor the declaration of namespaces or schemaLocations.

5.5 Internationalization
XML Serialization: in REST requests/responses, internationalization comes through the use of UTF-8 encoding in XML
bodies. This corresponds with a charset=”utf-8”.

Content-Type: application/xml; charset=”utf-8”<?xml version="1.0" encoding="UTF-
8"?>
<tns:example>
…..
</tns:example>
For JSON serialization, UTF-8 encoding will be used too as default, as specified in application/json [RFC4627]. Thus,
Content-Transfer-Encoding 8bit must be used with this media type.

Content-Type: application/json;”
Content-Transfer-Encoding: 8bit
<json UTF-8 data>

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 14 (24)

 2011 Open Mobile Alliance Ltd. All Rights
Used with the permission of the Open Mobile Alliance

For form-urlencoding serialization, internationalization support is more restricted. According to [RFC1738] and [HTML
FORMS], only alphanumeric ASCII characters [0-9, a-z, A-Z] and some other ($-_.+!*'()) may be included directly. Other
unsafe and reserved characters may be exchanged too but must escaped (",?, etc.).

This applies to GET/DELETE query parameters and urlencoded bodies in POST/PUT requests, as in the example below.

Content-Type: application/x-www-form-urlencoded
message=quedar%EDamos+ma%F1ana&address=621444448
For the exchange of binary data, base64 will be taken as Content-Transfer-Encoding.

5.6 Backwards Compatibility
APIs evolution should offer backwards compatibility for clients using older versions of the API. Backwards compatibility
should be guaranteed for previous upgrades (i.e. minor revisions) within a same Release (i.e. major revisions).

Figure 1

5.6.1 XML based APIs
In order to support for received API requests, a

a. Data Types – Elements:

• A new version of a data Type may be
be always optional (minOccurs=0).

o Example: a new element called “w
are kept

<xsd:complexType name="UserTermi

<xsd:sequence>
<xsd:element name="b
<xsd:element name="m
<xsd:element name="w

</xsd:complexType>

o Example: a new, possible third ch

<xsd:complexType name="AChoiceTy

<xsd:choice>
<xsd:
<xsd:
<xsd:

</xsd:choice>

CLIENT

(Release, Upgrade)
REQUEST
 Reserved.
 Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

Clients using older versions of the API

t server’s side, the following guidelines will be followed in APIs:

created, including new elements within a XML sequence/choice, but they will

apsupport” is included, but as optional. Former parameters (brand, model)

nalInfoType">

rand" type="xsd:string"/>
odel" type="xsd:string" />
apsupport" type="xsd:string" minOccurs="0"/>

oice is included

pe">

element name="choice1" type="xsd:string"/>
element name="choice2" type="xsd:string"/>
element name="choice3" type="xsd:string"/>

SERVER

(Release, Upgrade+N)

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 15 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

• A new version of a data type may be created, changing the cardinality of some attribute or parameter, but always
changing from mandatory to optional, never changing from optional to mandatory.

o Example: brand and model are now made optional

<xsd:complexType name="UserTerminalInfoType">

<xsd:sequence>
<xsd:element name="brand" type="xsd:string" minOccurs=”0”/>
<xsd:element name="model" type="xsd:string" minOccurs=”0”/>

</xsd:complexType>

• New attributes may be defined for REST and SOAP. However, they will always be optional (absence of
use=”required”).

o Example: a new attribute called “lastUpdated” is included but as optional.

<xsd:complexType name="UserTerminalInfoType">

<xsd:sequence>
<xsd:element name="brand" type="xsd:string" minOccurs=”0”/>
<xsd:element name="model" type="xsd:string" minOccurs=”0”/>

<xsd:attribute name="lastUpdated" type="xsd:string" use=”optional”/>
</xsd:complexType>

b. Data Types – Enumerations:

• New enumerated values may be included, but always maintaining the former ones.

o Example: a new value is included in the enumeration (pound), keeping the two other, existing formerly.

<xsd:simpleType name="CurrencyType">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="euro"/>
<xsd:enumeration value="dollar"/>
<xsd:enumeration value="pound"/>

</xsd:restriction>

c. Operations:

• Operations may be evolved, adding new parameters. But new parameters will always be optional. Existing
parameters will always be kept, for compatibility.

o Example: over an existing operation, a new, optional input parameter is included, “maxItems”.

Figure 2 Backwards compatibility for operations

• New operations may be added, but existing operations will always be kept, for compatibility.

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 16 (24)

 2011 Open Mobile Alliance Ltd. All Rights R
Used with the permission of the Open Mobile Alliance Lt

5.6.2 JSON based APIs
Above considerations are given for XML based API requests. For the JSON case, existing parameters in previous versions of
the API will be kept in API specifications, for backwards compatibility.

5.7 Forward Compatibility, Extensibility
APIs should be designed to offer forwards compatibility towards new versions of the API. This compatibility will typically
apply between upgrades under a same Release, in two ways:

• Upgraded servers returning a response to legacy clients

• New versions of clients making requests to existing, non upgraded API servers

Figure 3 Upgraded

Figure 4 New versions of clie

5.7.1 XML based APIs
Considering XML format, extensibility and evolu
XML Schemas.

Thus, the following technical guidelines will be fo

a. Extensions in sequences.

• It is recommended to include extensibilit
future, with “processContents=lax” proc
elements. Extensions over the same nam
go directly under parent data. However,
parse these XML elements.

o Example
<s:complexType name="ExtensionTyp
<s:sequence>
<s:any processContents="lax" min

namespace="##any"/>
</s:sequence>
<s:anyAttribute/>

</s:complexType>

CLIENT

(Release, Upgrade)

SERVER

CLIENT

(Release, Upgrade+N)
RESPONSE
d

servers returning a response to legacy clients

e

i

O

(Release, Upgrade+N)

SERVER

REQUEST
eserved.
. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

nts making requests to existing, non-upgraded servers

tion of the data exchanged over APIs is possible by means of extensible

llowed for the design of extensible APIs:

y points in root XML types or any other which is expected to evolve in the
ssing model, so that receivers are not forced to validate these extended

espace will go under a wrapper and extensions over other namespaces may
f the elements included belong to a known namespace, server will try to

e">

ccurs="0" maxOccurs="unbounded"

(Release, Upgrade)

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 17 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

And then, in the complex element definitions include also a direct wildcard to include directly additional elements
from other namespaces (to avoid XML determinism problems):

<xsd:complexType name="MyType">
<xsd:sequence>

<xsd:element name="e1" type="xsd:string"/>
<xsd:element name="e2" type="xsd:string"/>

<xsd:element name="Extension" type="tns:ExtensionType"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:any namespace="##other" processContents=”lax” minOccurs=”0”
maxOccurs=”unbounded”>

</xsd:sequence>
<xsd:anyAttribute/>

</xsd:complexType>

Note: “choice” and “all” complex data types are not extensible and thus can not be modified within a release.

b. Extension of attributes:

• The possibility of any future attribute is given by means of the inclusion of the anyAttribute wildcard, as indicated in
the example above.

c. Extension of enumerations

• The possibility of any future value in the enumeration is given by means the definition of the enumeration as a union
of the current enumerated values plus a possible string.

o Example:

<xsd:simpleType name="DeliveryStatusType">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="DeliveredToTerminal"/>
<xsd:enumeration value="DeliveryImpossible"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:element name="deliveryStatus">
<xsd:simpleType>

<xsd:union memberTypes="tns:DeliveryStatusTypes xsd:string"/>
</xsd:simpleType>

</xsd:element>

This procedure consists in the Must Ignore Rule, in which receivers may omit extended elements which they don’t
understand in syntactically correct XML documents (typically, the validation should then be performed by the application
logic on top of the API).

Note: Whether to follow this Must Ignore Rule - along with the extensibility mechanisms above - or not is a design decision
that must consider deployment dependent aspects as well as the specific usage that is desired for the API itself.

5.7.2 JSON based APIs
Above considerations are given for XML based API requests. However, JSON is an inherently extensible serialization
format. As a string, any data may be additionally included, although if server is not upgraded they will merely be ignored

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 18 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

5.8 Encoding and Serialization Details for MIME format
A MIME multipart message is used in some ParlayREST APIs (e.g. the MMS API) to represent content that consists of
several parts. ParlayREST suggests for simplicity purposes and better suitability to the internet developer community and
browsers to use multipart/form-data [RFC2388] and [HTML FORMS].

A MIME multipart message contains the root structure which carries the ParlayREST parameter set, and one or more
multimedia content attachments expressed as MIME body parts within the HTTP request or response.

Rules how to compose a multipart message are given in [REST_TS_Common]. Messages with one attachment are
represented differently than those with multiple attachments.

The following uses the example of MMS to illustrate how to encode and send a MIME multipart message using Forms when
the root fields are represented in XML and when more than one MMS content is sent:

POST http://{server root}/{api version}/messaging /{sender address}/outbound/requests

Other http headers
Content-Type: multipart/form-data, boundary=asdfa487

--asdfa487
Content-Disposition: form-data; name=“root-fields”
Content-type: application/xml

Here the XML representation of the MMS root fields “Inbound/OutboundMMSMessage”

--asdfa487
Content-disposition: form-data; name="attachments"
Content-type: multipart/mixed, boundary=BbC04y

--BbC04y
 Content-disposition: attachment; filename="textBody.txt"
 Content-Type: text/plain; charset= “UTF-8”
 Content-Transfer-Encoding: 8-bit

... text of the MMS ...
 --BbC04y
 Content-disposition: attachment; filename="file2.gif"
 Content-type: image/gif
 Content-Transfer-Encoding: base64

...contents of file2.gif...

--BbC04y

Other attachment may come here (correctly delimited by the boundary string)

--BbC04y--

--asdfa487--

The following uses the example of MMS to illustrate how to encode and send a MIME multipart message using Forms when
the root fields are represented in JSON, and when a single content is sent:

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 19 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

POST http://{server root}/{api version}/messaging /{sender address}/outbound/requests

Other http headers

Content-Type: multipart/form-data, boundary=asdfa487

--asdfa487
Content-Disposition: form-data; name=“root-fields”
Content-type: application/json

Here the JSON representation of the MMS root fields “Inbound/OutboundMMSMessage”

--asdfa487
Content-disposition: form-data; name="attachments"; filename=“picture.jpeg”
Content-type: image/jpeg

...contents of picture.jpeg...

--asdfa487--

5.9 Light-weight resources
A term called “light-weight resources” is used to describe resources that enable access to a part of a data structure or
individual elements in a data structure. This is in a contrast to other resources that operate on the entire data structure and are
regarded as heavy-weight resources. A data structure could be any kind of XML/JSON structure representing the heavy-
weight resource that is created using POST or PUT. A light-weight resource is basically a URL pointing out a resource
representing a sub-structure inside the data structure.

For light-weight resources the following apply.

• Only PUT, GET and DELETE operations can be used (PUT will create the resource if it does not exists).

• Precondition for using light-weight resources is that the ancestor heavy-weight resource exists.

• There may be several levels of Light-weight resources below the ancestor heavy-weight resource, depending on the
data structure (i.e. ../parent/child/grandchild)

• The entire light-weight resource URL is built up of the heavy-weight URL path and the relative resource path for
light-weight resource.

• HTTP Etag value MAY be reused from the ancestor heavy-weight resource. Applications MAY also assign
individual ETag values per light-weight resource.

The following text (steps 1-3) describes how light-weight resources should be described in API technical specifications.

1. Resources Summary (Section 5.1):

The light-weight resources should be illustrated in the resource tree as [ResourceRelPath] (i.e. a relative path of the
resource) surrounded by a hexagon shape. The heavy-weight resources are illustrated by using a rectangular shape.

Example:

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 20 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

The Resource table should describe the name of the resource as well as applicable operations:

Example:

Resource Base URL:
http://{serverRoot}/{apiV
ersion}/xyz

Data Structures HTTP verbs

GET POST PUT DELETE

Management
of individual
data of some
kind

/{userId}/Heavy-weight-
resource
path/[ResourceRelPath]

The data structure
corresponds to the
element pointed out by
the request-URI.

(Used for GET/PUT)

Retrieves
the value
of the
specified
attribute

No Updates
an
attribute

Removes
attribute.

2. Data Structure (Section 5.2.x):

Data structures that contain elements that could be accessed by using light-weight resources should include a column
called [ResourceRelPath]. This column includes string(s) and each of these strings represents a resource relative path for
light-weight resource that needs to be appended to the corresponding heavy-weight resource URL in order to create
light-weight resource URL for accessing corresponding element in the data structure. The root element and data type of
the resource associated with the [ResourceRelPath] are defined by the Element and Type columns in the row that defines
the [ResourceRelPath].

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 21 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

The presence attributes related
to person.

personYesPersonAttributesperson

Description[ResourceRelPath]OptionalTypeElement

The presence attributes related
to person.

personYesPersonAttributesperson

Description[ResourceRelPath]OptionalTypeElement

The user’s mood (angry,
confused, happy, etc.)
[RFC4480]

person/moodYesMoodmood

Description[ResourceRelPath]Option
al

TypeElement

The user’s mood (angry,
confused, happy, etc.)
[RFC4480]

person/moodYesMoodmood

Description[ResourceRelPath]Option
al

TypeElement

5.2.x Type:Presence

5.2.x Type:PersonAttributes

light-weight resourceroot element when accessed
as light-weight resource

Sub-elements in a data structure that are used to identify a particular instance of the parent element are regarded as key
properties (keys) of the element; for example for element service, key properties are service Id and service version. In
case the key(s) are used to identify a light-weight resource representation, it should be indicated in both the
[ResourceRelPath] and in the description part of the corresponding data structure(s) In addition, for keys: the following
apply:

• Keys are not accessible individually using light-weight resources ([ResourceRelPath] column should indicate
“Not applicable”)

• A key should be modeled in XML as an attribute to the parent element
• When assessing a parent element with light-weight resource, the key(s) shall not be altered (this should be

stated in the description column of the corresponding data structure(s).
• Where applicable, keys in [ResourceRelPath] should be surrounded by curly brackets ({..}).

Example 2:

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 22 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

The presence attributes
related to services.
For description of
“serviceId” and “version”
see 5.2.y.
The sub-elements
“serviceId” and “version” of
the type ServiceAttributes
are key properties for
service element and
SHALL NOT be altered
when this element is
accessed as a light-weight
resource.

service/{serviceId}/{version}YesServiceAttributes
[0..unbounded]

service

Description[ResourceRelPath]OptionalTypeElement

The presence attributes
related to services.
For description of
“serviceId” and “version”
see 5.2.y.
The sub-elements
“serviceId” and “version” of
the type ServiceAttributes
are key properties for
service element and
SHALL NOT be altered
when this element is
accessed as a light-weight
resource.

service/{serviceId}/{version}YesServiceAttributes
[0..unbounded]

service

Description[ResourceRelPath]OptionalTypeElement

Contains a link to an icon of the
user. [RFC4480]

service/{serviceId}/{versio
n}/statusIcon

YesStatusIconstatusIcon

The version of the specified
service. It is a key property of
the service.
It is defined as an attribute in
XML format.

Not applicableNoxsd:tokenversion

Identifier of the service. It is a
key property of the service.
It is defined as an attribute in
XML format.

Not applicableNoxsd:tokenserviceId

Description[ResourceRelPath]Optio
nal

TypeElement

Contains a link to an icon of the
user. [RFC4480]

service/{serviceId}/{versio
n}/statusIcon

YesStatusIconstatusIcon

The version of the specified
service. It is a key property of
the service.
It is defined as an attribute in
XML format.

Not applicableNoxsd:tokenversion

Identifier of the service. It is a
key property of the service.
It is defined as an attribute in
XML format.

Not applicableNoxsd:tokenserviceId

Description[ResourceRelPath]Optio
nal

TypeElement

5.2.z Type: ServiceAttributes

5.2.x Type: Presence

key properties

3. Detailed resource operation description (starts with Section 5.4 until 5.X)

Typically a URL for light-weight resource should look like

http://{Heavy-weight resource path}/[ResourceRelPath

Table 5.X.1 Request URI variables, should include description for [[ResourceRelPath]

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 23 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

Example:

The following request URI variables are common for all HTTP commands:

Name Description

serverRoot server base url: hostname+port+base path. Example: http://example.com:80/ParlayREST

apiVersion version of the ParlayREST API clients want to use (e.g. 1 for version 1.x)

xyz Some data...

[ResourceRelPath]
Relative resource path for a light-weight resource, consisting of a relative
path down to an element in the data structure. For more information about
the applicable values (strings) for this variable see 5.X.1.1

The description part of [ResourceRelPath] refers to another section-table (5.X.1.1) that is specific for light-weight
resources and that should to be created too. The table should describe what types of light-weight resources can be
accessed by that particular light-weight resource, what methods are available, and the link to the data structure (section
5.2.X) that contain possible strings (relative resource paths) that could be used for [ResourceRelPath].

Example:

5.X.1.1 Light-weight relative resource paths

The following table describes the types of light-weight resources that can be accessed by using this resource, applicable
methods, and links to data structures that contain values (strings) for those relative resource paths.

.

Light-weight resource type Method supported Description

A type of the light-weight
resource

GET, PUT, DELETE

Description of the type of light-weight resource that can be
accessed.

Here also shall be included a reference to the section with the Data
Structure where such light-weight resource type is specified. The
data structure in the column [ResourceRelPath] contains values
(strings) for relative resource path [ResourceRelPath].

OMA-WP-Guidelines_for_REST_API_specifications-20110111-C Page 24 (24)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-WhitePaper-20110101-I]

Appendix A. Change History (Informative)

Document Identifier Date Sections Description
OMA-WP-Guidelines_for_REST_API_specifications-
20100818-D

18 Aug 2010 All Generalized REST White Paper, created from version 1_0 WP

OMA-WP-Guidelines_for_REST_API_specifications-
20100827-D

27 Aug 2010 3, 5 Implement CR OMA-ARC-REST-2010-0420

OMA-WP-Guidelines_for_REST_API_specifications-
20101026-D

26 Oct 2010 Implement the following CRs
• OMA-ARC-REST-2010-0423R02
• OMA-ARC-REST-2010-0582
Address CONRR comments K002, K005, K006, and K008
Make some minor clerical corrections.

OMA-WP-Guidelines_for_REST_API_specifications-
20101208-D

08 Dec 2010 5.9 Implement the following CRs
• OMA-ARC-REST-2010-0715R01
• OMA-ARC-REST-2010-0718

OMA-WP-Guidelines_for_REST_API_specifications-
20101214-D

14 Dec 2010 All Editorial fixes: heading styles, Cover page and history table

OMA-WP-Guidelines_for_REST_API_specifications-
20110111-C

11 Jan 2011 All Status changed to Candidate by TP:
 OMA-TP-2010-0531R01-
INP_ParlayREST_2_0_for_Candidate_approval

	1. Scope
	2. References
	3. Terminology and Conventions
	3.1 Conventions
	3.2 Definitions
	3.3 Abbreviations

	4. Introduction
	5. Principles for defining REST APIs in OMA
	5.1 API Documentation
	5.1.1 API Data Types

	5.2 Error Handling
	5.3 Examples
	5.4 Common Data Formats
	5.4.1.1 XML
	5.4.1.2 JSON
	5.4.1.3 www-form-urlencoded
	5.4.1.3.1 Serialization guidelines for www-form-urlencoding in Requests.

	5.5 Internationalization
	5.6 Backwards Compatibility
	5.6.1 XML based APIs
	5.6.2 JSON based APIs

	5.7 Forward Compatibility, Extensibility
	5.7.1 XML based APIs

	5.7.2 JSON based APIs
	5.8 Encoding and Serialization Details for MIME format

	5.9 Light-weight resources

